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ABSTRACT

Investigation into Protein Folding Prediction of Helices Using Techniques in

Computer Science. (May 1998)

Neal Andrew Krawetz, B.A., University of California, Santa Cruz.

Chair of Advisory Committee: Dr. John Yen

The research presented in this dissertation focuses on the application of 

computer science techniques in the field of theoretical biochemistry. This 

interdisciplinary study analyzes current black-box neural network systems and applies 

information from the analysis into a novel step-wise (white-box) Bayesian prediction 

system with heuristic refinement that provides insight into the prediction and 

performs comparably with existing prediction models.

This research studies the prediction process that determines a protein’s helices 

from the primary amino acid sequence. Existing neural network prediction systems 

are analyzed and some of the factors that the systems consider important in the 

prediction process are identified. This information is then applied in a step-wise 

Bayesian prediction system and refined using heuristics that incorporate high-level 

knowledge of the helix structure. The result is a white-box prediction system that is 

at least as accurate as the black-box system and provides insight into the prediction 

process.

The Bayesian prediction system used in this research focuses on the prediction 

of helices by using region-specific, position-dependent helical propensities. Because 

variations in local amino acid sequences determine whether a helix is formed, we 

infer that each amino acid has explicit preferences toward specific regions (N-, C-
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terminals, and middle) in helices. These region-specific, position-dependent 

propensities appear to correlate with spatial organization along the helix wheel. 

Furthermore, the statistical analysis indicates that the helix propensities are 

conditionally independent for structural determination. Using this information, a 

statistical approach is proposed for determining helix locations from known 

sequences of amino acids. Incorporating high-level helical patterns with knowledge- 

based postprocessing provides a novel step-wise approach to helix location 

identification.
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I. INTRODUCTION

The research presented in this dissertation focuses on the application of 

computer science techniques in the field of theoretical biochemistry. This 

interdisciplinary study analyzes current black-box neural network systems and applies 

information from the analysis into a novel step-wise (white-box) prediction system 

which provides insight into the prediction and performs comparably with existing 

prediction models.

A. The problem and motivation

A protein’s shape and configuration determines how it interacts with 

structures such as DNA, RNA, and other proteins. The protein’s form depends on the 

sequences of amino acids which make up the protein. The amino acids are chained 

together in a primary sequence. These amino acids interact with other parts of the 

primary sequence, folding the protein into a complex bonded structure. A 

biochemical research problem attempts to determine the final shape of the protein 

from the primary sequence. To resolve this problem, biochemists and biophysicists 

use a variety of approaches, including measured observations of the stabilized protein, 

molecular dynamics simulators to model the chemical interactions, and prediction 

systems to develop a best-guess with regards to protein structures.

Physical observation of the folded protein is one of the most reliable 

approaches used to determine protein configuration. X-ray crystallography is used to 

create a three-dimensional electron density map of the entire protein. Difficulties may 

arise when large globular proteins partially occlude internal regions, or when proteins 

do not crystallize easily. Furthermore, the electron density map may be ambiguous or 

difficult to interpret. The entire process, from crystallizing the protein to the final

The journal model followed in this dissertation is Protein Science.
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interpretation of the electron density map, may take anywhere from a few months to a 

few years.

Many proteins are derived from a common source, either through evolutionary 

mutations from a single protein or by common configurations for required 

interactions. These protein families share common sequences and structures. There 

are an estimated 1,500 protein families, although the available data contains only 

about 120 families (Chothia, 1992). Because of the vast number of unknown protein 

families and the large amount of time required to “observe” single proteins, 

theoretical techniques are used to provide a best-guess of the protein structure.

Proteins are composed of 20 basic amino acids1. These amino acids have 

known atomic configurations and are readily identifiable. Through the use o f known 

molecular dynamics (MD), simulators can be used to model the forces acting on each 

atom and determine the final configuration. Although faster than X-ray 

crystallography, current MD simulators still require weeks or months of computer 

time.

The three-dimensional structure of the protein is not always essential to 

determine the protein’s general shape and function. The amino acids are known to 

form any of three stable secondary structures: helices, sheets, and turns. By 

identifying likely secondary structure locations, protein folding prediction systems 

offer a good best-guess of the protein configuration in a few seconds to a few 

minutes. Although not as accurate as MD simulators or X-ray crystallography, a 

reliable prediction system can be used to identify likely protein structures, speed up 

MD simulations, and reduce ambiguity from electron density maps, as well as 

determine likely structure locations in newly identified amino acid sequences.

lAlthough other rare compounds, such as hydroxylproline and sarcosine, may be 
included in some primary sequences, the vast majority of primary sequences consists 
of the basic 20 amino acids.
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B. Objectives and overview of the research

The common protein folding prediction approaches are easily classified into 

white-box and black-box systems. White-box prediction systems allow for a clear 

view of the factors involved in the prediction and identify how these factors influence 

the prediction process. White-box protein folding prediction systems are generally 

designed around a priori information that is considered important in the folding 

process. Chou and Fasman (1974), for example, identified hydrophobicity as a 

significant factor in determining secondary structures; the Chou-Fasman algorithm is 

designed to combine hydrophobicity measurements.

Black-box protein folding prediction systems use little or no a priori structural 

information in the prediction process. Although the previous black-box systems 

generally perform better than the white-box systems, there has been little research 

done to identify what physical factors are important to the prediction system.

The objectives of this research are summarized as follows:

1. Design a novel approach fo r  providing more data to the black-box and 

white-box systems. Currently, 120 protein families account for nearly 

20,000 amino acids, which can be used to train a black-box system 

without introducing biases from a specific family. We propose a novel 

approach for incorporating an additional 20,000 amino acids from 

variances in related proteins without introducing specific family biases.

2. Analyze and extend a classical black-box (neural network) prediction 

system. Analyzing the information stored within the neural network 

allows the determination of factors that the system considers 

significant in the prediction process.

3. Based on the analysis o f the black-box system, design a novel step­

wise prediction system o f comparable, or better, performance. By 

using the key information identified by the black-box system, a white- 

box system can be created with comparable performance to the black-
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box systems. In this work, a probabilistic approach is used to combine 

helical likelihoods. The resulting Bayesian inferences are refined 

using heuristics based on helical structure.

4. Correlate results with findings from other disciplines. Although the 

probabilistic information used to determine the secondary structure 

prediction was not determined from a priori structural information, the 

information does correlate with known atomic, amino acid, and helical 

information.

5. Provide novel insight into the prediction process. Through correlation 

with known structures and a step-wise prediction system, insight 

determining the essential factors of the folding process, and how they 

relate, is obtainable.

To limit the complexity of the system and research, this work focuses on the 

prediction of only one secondary structure: helices. Prediction of other secondary 

structures and of the tertiary and quaternary configurations are beyond the scope of 

this work.

C. Organization of the dissertation

Chapter I discusses the overview and motivation behind this work, and its 

objectives and scope. Chapter II summarizes related studies in the areas of protein 

science, probability and Bayesian inference, neural network systems, and protein 

folding prediction models. An explanation of the data set used and data collection 

method is provided in Chapter HI. Chapter IV discusses the metrics used to compare 

prediction systems.

Chapter V analyzes a black-box neural network protein folding prediction 

system. In Chapter VI, the probabilistic helical propensities are defined and analyzed. 

Chapter VH discusses the helix pattern methodology used by the novel prediction 

system. In Chapter VIH, the results from an implementation of the Bayesian inference
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system with knowledge-based postprocessing are presented. Chapter IX summarizes 

the finding of this research and suggests areas for future work.
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n. REVIEW OF RELATED W ORK

This chapter reviews the fundamental methodologies, concepts, and 

technologies used by this research. Section A reviews the basic principles regarding 

probabilities and Bayesian inference used in Chapter VI as the basis of the prediction 

system. Section B discusses basic protein structure, including amino acid 

composition, secondary structures, the tertiary and quaternary interactions, and 

folding methodology. Section C provides a brief overview of related knowledge- 

based systems. Chapter VH uses similar knowledge-based systems to combine high- 

level information about protein structure to enhance the prediction process. Neural 

network systems and the classical sliding window approach are reviewed in Section D 

and analyzed in Chapter V. The final section reviews current protein folding 

prediction systems, illustrating the current state of the art.

A. Probabilistic methodology

Bayes’ theorem (Laplace, 1812) is used to convert the knowledge of P(ALB) 

into a calculation of P(BIA):

PCAB)xP(S)
P(A)

By assuming that events combine independently, we can substitute P(A) with

P(A) =P(A,B) +P(A,-ii?)
= P(ALB)xP(B) + P(Abfi)xP(-iB), ^

and derive the conditionally independent form of Bayes’ theorem:

. ----------- P(AIB)xP(B)-----------
P(AIB)xP(B)+P(AI-.B)xP(-.B) '
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When used with protein folding prediction, the prior probabilities, P(2?) and 

P(-iB), represent the occurrence rates of the secondary structure being predicted. The 

conditional probability, P(ALB), generally represents the occurrence rate of an amino 

acid given a known structure; this occurrence rate is readily available. The posterior 

probability, P(£IA), denotes the desired structural prediction from the amino acids. 

The implementation of Bayes’ theorem with respect to the protein folding prediction 

problem is discussed in Chapter VI.

B. Protein structure

Proteins consist of repeating substructures called amino acids. These amino 

acids define a known atomic configuration. The folding and final shape of a protein 

depends on the interactions of the atoms in the amino acids (Branden & Tooze, 1991).

1. Amino acid configuration

The amino acids consist of two components: the backbone and the sidechain. 

While each amino acid has the same backbone structure2, there are different 

sidechains which define the unique amino acids. The backbone, as shown in Figure 1, 

is viewed from the nitrogen terminal (N) to the carbon terminal (C). The sidechain,

R, branches from the oc-carbon (CJ. The backbones of neighboring amino acids 

connect from N-terminal to C-terminal, forming a single chain referred to as the 

protein backbone. The protein backbone is not a rigid structure; it can bend into coils 

or loops, forming complex structures.

2Proline is the only amino acid with a different backbone structure due to a sidechain 
that connects directly to the backbone.
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R

NH

Ca

O
Fig. l .  Atomic structure of the amino acid backbone. Ca denotes the a-carbon which 
connects to the sidechain, R.

The composition of the sidechain determines the amino acid. There are 20 

different types of sidechains which are common. Although rare mutations to the 

sidechain structure exist, analysis of these amino acids is beyond the scope of this 

research due to their rarity. The 20 different amino acids are shown in Fig. 2. These 

amino acids are frequently referred to by their common names, abbreviated names, or 

single-letter representations. For example, alanine may be referred to as “Ala” or 

“A”.

a. Primary sequence

The primary sequence of a protein lists the amino acids along the protein 

backbone, from the N-terminal to the C-terminal, without regards to three- 

dimensional structure. Proteins are known to fold in consistent patterns; a protein 

which is stretched into a single long chain will, over time, refold into its lowest- 

energy state. Because the primary sequence describes the covalent bonds of the atoms 

in the protein, it is hypothesized that the primary sequence contains all the necessary 

information for determining the final folded structure.
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Glycine. 
(Gly, G)
Alanine. 
(Ala, A)

Valine _ 
(Val, V)

Leucine. 
(Leu, L)

Isoleucine. 
(He, I)

S e r in e .  
(Ser, S)

Threonine. 
(Thr, T)

A sparatate. 
(Asp, D)

H

CH3
y C H 3

C H 3 ^ C H 3

•CH2—

/ H  CH3 
"C^"‘ C 2H5

c h 3

“CH2— OH

/ H
- c ^ c h 3

OH

"CH2— COO'

1= 0 0 '

A ( C a 9N ) e — C H ^ _ 0 0  _ N H 2

Histidine .
(His, H) c Vv

HN^NH

Arginine—  H . — NH 
(Arg, R) (CH2)3 NH

Cysteine—  H 
(Cys, C) 2

/N H

% T h

Phenylalanine_  
(Phe, F) CH2

G(GlnmQ)e _ !CH2 >2 CO — NH2

Methionine. 
(Met, M) ~ ( C H 2 )2- c h 3

Tryptophan—
(Tip, W) C ‘k f̂

NH

P H 2 CH2 
Proline H
(Pro, P) P ^

NH COOH

Fig. 2. The 20 common amino acid sidechains. Along with the atomic configuration, 
the amino acid’s common name, abbreviated name, and single letter representation 
are provided.
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b. Classical propensities

Each sidechain connects to the backbone at the a-carbon, allowing for the 

sidechain to rotate freely. The exception to this is proline, where the sidechain 

connects to the backbone in two places, forming a ring. Although the backbone is 

positively charged at the N-terminal and negatively charged at the C-terminal, most of 

the physical attributes of the amino acids are due to interactions with the sidechains 

rather than with the backbone.

It is commonly hypothesized that the amino acids within the primary structure, 

without external influences, interact to form protein structures. There are many forces 

involved in determining the interactions. The measurement of these forces can be 

directly linked to each amino acid. An amino acid’s interaction propensity is a 

measurement of the specific amino acid’s contribution in the interaction. Propensity 

measurements, by definition, are unique to the type of amino acid and are not 

influenced by adjacent amino acids in the primary sequence. Table 1 lists some of the 

more common propensity scales.
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Table 1. Common amino acid propensity measurements

Amino Acid Van der Waals 
volume (A3)

Hydrophobia ty 
(Chou & Fasman, 

1974)

Hydrophobicity 
(Fauchere & 
Pliska, 1983)

Hydropathy 
(Kyte & Doolittle, 

1982)

Ala (A) 67 1.45 0.42 1.8

Arg(R) 148 0.79 -1.38 -4.5

Asn (N) 96 0.73 -0.82 -3.5

Asp (D) 91 0.98 -1.05 -3.5

Cys (C) 86 0.77 1.34 25

Gln(Q) 114 1.17 -0.30 -3.5

Glu (E) 109 1.53 -0.87 -3.5

Gly(G) 48 0.53 0.00 -0.4

His (H) 118 1.24 0.18 -3.2

He (I) 124 1.00 2.46 4.5

Leu (L) 124 1.34 2.32 3.8

Lys (K) 135 1.07 -1.35 -3.9

Met (M) 124 1.20 1.68 1.9

Phe (F) 135 1.12 2.44 2.8

Pro (P) 90 0.59 0.98 -1.6

Ser(S) 73 0.79 -0.05 -0.8

Thr (T) 93 0.82 0.35 -0.7

Trp (W) 163 1.14 3.07 -0.9

Tyr(Y) 141 0.61 1.31 -1.3

Val(V) 105 1.14 1.66 4.2
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Each atom consists of neutrons and protons, surrounded by a shell of 

electrons. The larger the atom, the larger the electron shell. When atoms bond, their 

electron shells merge, allowing the electron shells around the molecule to cover an 

area around the entire molecule. The Van der Waals volume, which measures the size 

of each atom’s electron shell, describes the size of each amino acid’s sidechain.3 

Although this measurement is not commonly used as a propensity, it is frequently 

used in molecular dynamics simulators when determining atomic interactions.

There are many different hydrophobicity scales used for amino acid 

propensities. Because amino acids are generally studied while in aqueous solution, 

the interaction between the sidechain and the ambient medium becomes a powerful 

force. Amino acids that are hydrophilic tend to move toward the ambient solution, 

while hydrophobic amino acids are generally repelled from water molecules. 

Consequently, protein structures commonly have clustered regions of amino acids that 

are strongly hydrophilic or hydrophobic.

c. 0  and Y  angles

The covalent bonds to the carbons in the backbone are fairly rigid; these bonds 

are at a fixed angle of 100° from the N-terminal to the a-carbon to the C-terminal, 

and form a backbone plane. Although the backbone plane is fairly rigid, the N-C0 and 

Ca-C bonds can rotate, allowing the sidechain’s position to vary in relation the 

backbone plane. The angle of rotation along the N-Ca bond is referred to as the 4) 

angle; the rotation of the Ca-C bond determines the angle. These angles control the 

amount of rotation along the backbone and physically limit the secondary structure 

formation. Although every amino acid can form any N-Ca-C angle, some angles are

3The Van der Waals force describes the repulsive property of an atom. When many 
atoms are in a close proximity to each other (pressure), they position themselves in a 
lowest energy configuration. The Van der Waals volume describes the minimum 
energy distance between atoms.
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more common for certain amino acids.

2. Secondary structures

Localized regions of amino acids interact to form basic secondary structures: 

helices, sheets, turns, and coils. The helices, sheets, and turns are defined by bonding 

angles. Coils represent a lack of bonding. A coil is a free-floating structure that is 

generally unrestricted in configuration, unlike the other secondary structures that are 

considerably more rigid. It is through these secondary structures that the protein 

shape is given stability.

a. Helices

This research focuses on helix identification and information content as 

determined from the primary sequence. When the protein backbone winds into a 

spring-like structure and is held by hydrogen bonding between amino acids, helices 

are formed. Helices are defined by specific formations and have consistent physical 

characteristics, including the telltale spring-like structure, the directional dipole, and 

amino acid positioning along the helix wheel. Some factors, such as Neaps, Ccaps, 

and helix bundles are known to affect the stability of a helix.

(1) Types of helices

Amino acids are involved in helices about 35% of the time.4 There are ten 

different helix formations, although some are only theoretical and have not yet been

^ h e  percentage of amino acids in helices was determined from the data set, defined 
in Chapter 1H. The structural occurance rates from the data set are similar to other 
published findings (Qain & Sejnowski, 1988; Muskal & Kim, 1992; Rost & Sander, 
1993b).
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observed. The most common helix is the right-handed a-helix. This helix has a tight 

circular loop with 3.6 amino acids per turn. When viewed through the shaft of the 

helix, the a-helix appears circular. Other helices include 3I0-helices which have 3 

amino acids per turn and 10 atoms per hydrogen bond, and rc-helices with 4.4 amino 

acids per turn. Unlike the a-helix, the narrow shaft in 3 I0-helices causes atoms to be 

close together, generating high Van der Waals forces (repulsion between atoms). 

Thus, 3 l0-helices are generally not a lowest-energy formation and are only found in 

extreme circumstances (Creighton, 1993). The rt-helices, with their wide shafts, may 

be flexed and are usually unstable.

For the focus of this research, all helices are considered right-handed a - 

helices. These helices account for more than 95% of the currently observed helices. 

Although this is a weak assumption for helices in general, the techniques used in this 

research are not dramatically affected by 5% noise in the data. Helices vary in length 

from three amino acids to more than 30 amino acids; most helices are six to 13 amino 

acids in length, containing two to four loops, as shown by the histogram in Figure 3.

1 4 0 - ...............................................................................

£120

 ̂100

tj 80

60

40

20

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Helix length (in number of amino acids)

Fig. 3. Histogram of helix lengths indicating the most common sizes of helices.
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N-terminal H ,ix
M  A A A^ v T v v T -

C-terminal

Fig. 4. Direction of helix dipole. The N-terminal of the helix is positively charged 
and the C-terminal is negatively charged. The amount of charge differential varies for 
each helix.

(2) Helix dipole

The dipole moment is an asymmetrical electrostatic charge with a measurable 

magnitude and specific direction. Every atom, molecule, and compound has a dipole 

moment. The dipole of a helix runs along the length of the helix. It is found near the 

center of the helix, running from the C-terminal to the N-terminal, as illustrated in 

Figure 4. The N-terminal of the helix has a positive charge, while the C-terminal is 

negatively charged. The amount of charge variation differs with each helix.

(3) Helix wheel

Amino acids are spaced along the length of the helix at regular intervals.

There are approximately 3.6 amino acids per turn in the helix and the amino acid 

backbones are bent at an average of 100 degrees. Each amino acid can interact with 

its physically adjacent neighbors. As shown in Figure 5, the amino acid at position 5 

in the helix can interact vertically, along the length of the helix with amino acids in 

positions I, 9, 12, and 16, as well as with the adjacent amino acids along the primary 

sequence, in positions 3,4, 6, and 7 (and possibly further). The vertical amino acid 

interactions along the helix provide stability by forming hydrogen bonds which hold
o o

the helix loops together. The rise along the helix is 1.5A per amino acid, or 5.4A per 

turn.
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Fig. 5. Spatial positioning along the helix wheel. A: the positions of adjacent amino 
acids in the primary sequence. B: the helix spiral around the wheel.

(4) Helix stability

Helices are held in stable formations by the hydrogen bonding between 

vertically aligned amino acids. In a-helices, hydrogen bonds occur every 13 atoms 

along the backbone. As shown by the helix wheel, the amino acids at position i can 

form hydrogen bonds with the amino acids at positions /+3 or i+4 (Fig. 6). These 

hydrogen bonds hold the backbone in the spiral configuration.
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Fig. 6. Hydrogen bonding between turns in the helices of protein 1CRN (Teeter, 
1984), as displayed by Rasmol (Sayle, 1994). The thin lines denote hydrogen bonds. 
The amino acid positions, z'e[0,l 1], have been labeled along one of the helices.

(5) Helix bundles and hydrophobicity

Helix bundles occur when multiple helices interact with each other (Holm & 

Sander, 1993). The helices become aligned and reinforce each other’s stability. 

Frequently, helix bundles are ambipathic, having one side of the helix wheel 

hydrophobic and the other side hydrophilic. The similar hydropathic regions of the 

helices become adjacent and interact to increase the helices’ stability (Kamtekar & 

Hecht, 1995).

(6) Neaps and Ccaps

The first and last few amino acids in a helix have been identified as having an 

extreme influence on the formation of helices (Aurora et al., 1994, Aurora & Rose, 

1998). These regions, referred to as the Neap and Ccap, are suspected of being 

significant in the formation of helix terminals. Helix capping (Aurora & Rose, 1998)
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extends the hypothesis that helix conformation is “specified by a stereochemical code, 

similar to DNA where strand complementary is determined by hydrogen bonds” 

(Aurora et al., 1994).

b. Sheets

Sheets consist o f nonsequential regions in the primary sequence which bond 

into a plane (Fig. 7). There are two types of strands that make up sheets: parallel and 

antiparallel. In parallel strands, the N-terminus5 of one sequence is aligned with the 

N-terminus of the bonded sequence. Antiparallel strands align the N-terminus of one 

sequence with the C-terminus of the bonded sequence. The stability of the sheet may 

depend on all amino acids in each strand; changing a single amino acid may break all 

of the bonds in the sheet.

c. Turns and coils

The remaining secondary structures are turns and coils. Turns consist of three 

or four amino acids which form a strong bond, effectively bending the primary 

sequence into a tight curve. Unlike other secondary structures which are physically 

independent, turns may overlap with the terminal amino acids in helices and sheets.

Coils, also referred to as “random coils” or “loops,” denote the absence of 

helices, sheets, and turns over a region of the protein. In general, there is little or no 

hydrogen bonding along coils, giving the region little stability.

5 A “terminal” is a specific atom, position, or amino acid. A “terminus” is in the 
direction of the terminal.
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Fig. 7. Example of a sheet from the lysozyme mutant, 1L30 (Alber et al., 1988), as 
displayed by Rasmol (Sayle, 1994). The sheet is highlighted along with its hydrogen 
bonds. Strands 3 and 4 form a parallel sheet while strands 1, 2, and 3 form 
antiparallel sheets.

3. Tertiary and quaternary interactions

The secondary interactions of a primary sequence are capable of influencing 

each other. This influence is refered to as the tertiary interaction. These interactions 

include helix rotations and alignment with other helices and sheets, and the curving of 

sheets into beta barrels. For example, two ambipathic helices, denoted by having 

distinct hydrophobic and hydrophilic sides, prefer to align so that their hydrophobic 

sides are adjacent. Due to stresses formed by tertiary interactions, some secondary 

structures may be reshaped or broken; tertiary interactions are thought to be the 

primary cause of 310-helices (Creighton, 1993).

In addition to the tertiary interactions, an entire protein chain may be 

influenced by other adjacent chains, forming quaternary interactions. Due to the high-
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level complexity o f quaternary interactions, few molecular dynamics simulators or 

structure prediction systems consider these influences.

4. Minimum energy folding states

The final shape of a protein is a minimal energy state. When energy is added 

to the system by temperature, pressure, or motion, bonds and structures become 

unstable. The final shape of a protein minimizes the energy loss in the system. 

Molecular dynamics modeling attempts to simulate the system until it achieves the 

final stable configuration. Other approaches attempt to define the folding process into 

distinct energy states. Structural prediction systems assist these approaches by 

providing a best-guess as to the initial configuration.

a. Molecular dynamics modeling

Molecular dynamics modeling (MD) determines the stable protein structure by 

modeling all atoms in the system and all atomic interactions. Programs such as 

XPLOR and NAMD model between 10,000 and 500,000 atom systems, including all 

bonding interactions. Due to the required small time step (around one picosecond) 

and the incredible number of interactions to monitor, these systems generally run for 

weeks or months on high-end workstations and supercomputers.

b. Two-stage folding process

Boczko and Brooks (1995) use molecular dynamics modeling to illustrate a 

two stage folding process. In the first stage, secondary structures rapidly form. In 

particular, secondary structures over sequential amino acids, such as helices, are 

constructed. They attribute this to local minimal energy along the primary sequence. 

Since a helix is a minimal energy structure covering a sequential area of amino acids,
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helices seem to appear before sheets or turns. After forming the local minimal energy 

state (many helices), the tertiary interactions proceed to “unfold” the local minimal 

energy structures as more optimal energy formations are created. Helices may be 

modified or broken during this process, altering a local minimum to a higher energy 

state in order to stabilize the entire systems energy. This second “unfolding” stage 

takes significantly longer that the initial “folding” stage.

The two-stage folding process directly relates to this research. The prediction 

system described in Chapter VI and VH overpredicts helices. This overprediction can 

be explained by the two-stage folding process: the prediction system appears to 

determine the results of the first folding stage.

C. Neural networks

In contrast to Bayesian probabilistic systems, a neural network determines the 

mapping from the input space to the output space from a learned transformation 

matrix. Because of the transformation complexity between the primary sequence and 

secondary structures, neural networks have been used to “learn” the transformation.

1. Perceptron

The basic perceptron (Fig. 8) compares the sum of a set of inputs (x# x,, ..., 

weighted by their importance, or weight {W q, \v „ ..., vvy), to a threshold t  (Hecht- 

Nielsen, 1989; Hertz et al., 1991). The single output of the system, y ", represents the 

results of the comparison:

n

1 if Y  wixi * 1

0 if Y wixi < r - 
/=o
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Output:

Perceptron:

Input:

Fig. 8. The basic perceptron model with n inputs, x0 through xn, and one output y 
The inputs are scaled by the weight matrix, wQ through \vn and combined by the 
perceptron. The desired output, y , is only used during the training of the weight 
matrix.

More generalized perceptrons use the raw summation value or apply sigmoidal 

functions to the system output rather than applying a strict threshold, t.

During the training phase, the desired output, y, is supplied to the system. The 

weights are then adjusted based on the difference between the predicted and desired 

outputs, and scaled by the learning rate, r|:

w / = w  + T )* jc (y -y ;). (5)

2. Neural network floating threshold

A single perceptron computes a sum of products of the inputs, ix, and the 

weight assigned to the input, wx. The resulting value, ox, may be scaled using a 

sigmoid or other limiting function, but is finally compared to a single-value threshold. 

To best optimize the system, the perceptron uses a floating threshold, t. Rather than 

treating the threshold as a fixed constant (r j,
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w  w

Fig. 9. Perceptron with floating threshold, t.

T,ixwx > t'\ (6)
x-n

the threshold is handled like another weight in the system, but assigned the constant 

input value of - 1:

( i i xwx) + ( - l ) x t  > 0. (7)
x-n

The value of the floating threshold, t, is modifiable by the neural network during the 

training stage. The resulting output produced by the neural network is summed with 

the floating threshold and compared with the constant value zero (Fig. 10).

3. NETtalk: basic neural network sliding window model

The simplest approach to protein folding prediction with neural networks uses
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a NETtalk-based approach (Qain & Sejnowski, 1988; Holley & Karplus, 1989;

Muskal & Kim, 1992). The NETtalk system (Sejnowski & Rosenberg, 1986) uses a 

neural network system to determine the pronunciation of English words. This system 

uses an input window of sequential letters, spaces, and punctuation, and predictes 

which of 30 phonetic sounds should be produced. Each perceptron is trained 

independently and the perceptron with the strongest prediction generates the sound.

A system based on the NETtalk neural network correlates the pronunciation of 

English letters with the structures of a protein. The linear sequence of English letters 

in a sentence resembles the primary sequence of amino acids. Similarly, the 

pronunciation of each letter corresponds with the secondary structures; there are a 

finite number of pronounciations for each letter, depending on the adjacent letters.

The tertiary interaction of proteins is similar to the same series of letters having 

different sounds. For example, interactions within the semantic context alter the 

pronunciation of the letters “READ” (red or red): “I will read it” (red) or “I have 

read it” (red). Similarly, the primary sequence Arg-Glu-Ala-Asp-De-Asn-Gly, 

“READING” using the symbols in Table 1, is found predominantly in helices, but 

also in sheets and coils. The structure of this sequence is dependent on interactions 

with other secondary structures.

The protein’s quaternary interactions, while playing a significant role in some 

protein formations, are similar to the subtle changes in pronunciation between related 

sentences of a paragraph. Due to the complexity of the quaternary interactions and 

the unknown degree of influence they have on a system, secondary structure 

prediction systems generally disregard the quaternary effects.

In the NETtalk-based systems, a window of the primary sequence is used as an 

input to a perceptron then predicts the most likely secondary structure (Fig. 10). After 

each prediction, the window is moved to cover a different section in the same primary 

sequence. The predicted structure is associated with the amino acid in the middle of
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Output: Helix?

Perceptron:

AspHisPro GlyAlaGluAsnInput:

Fig. 10. A basic NETtalk-based prediction system with sliding window used to 
predict helices. After predicting Leu in the context of Asn-Glu-Ala-Leu-Pro-His- 
Asp, the system will slide the window to predict Pro in the context of Glu-Ala-Leu- 
Pro-His-Asp-Gly.

the window.

D. Protein folding prediction systems

The best way to determine a proteins structure is to observe it, usually with an 

electron microscope or X-ray crystallography. Unfortunately, observing the protein is 

difficult, time-consuming, and expensive. Protein folding prediction systems attempt 

to determine the secondary, tertiary, or quaternary structures without actually 

observing the system.

There are four main approaches to protein folding prediction: statistical 

models, homology and motif based systems, artificial intelligence, and molecular 

dynamics simulation.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

26

1. Homology and m otif based prediction systems

Homology is defined as the quality of similarity between protein sequences.

As described by Reeck et al. (1987):

In its precise biological meaning, “homology” is a 
concept of quality. The word asserts a type of 
relationship between two of more things. Thus, amino 
acid or nucleotide sequences are either homologous or 
they are not. They cannot exhibit a particular “level of 
homology” or “percent homology.” Instead, two 
sequences possess a certain level of similarity.
Similarity is thus a quantitative property. Homologous 
proteins or nucleic acid segments can range from highly 
similar to not recognizably similar (where similarity has 
disappeared through divergent evolution).

Approaches using homology compare a primary sequence with unknown 

secondary structure with a similar primary sequence that has a known secondary 

structure. The hypothesis for homology modeling assumes similar primary sequences 

have similar structures.

Along the same lines as homology, motifs denote small patterns of amino 

acids with known likely structures. Motifs, such as “AAxAR is a helix” where ‘x’ 

represents any amino acid, are mostly correct, but a large number of motifs are 

required for general application.

2. Statistical prediction models

Statistical prediction models use observed occurrences of amino acid 

interactions to estimate likely structures. These systems include classical propensity 

models and probabilistic systems.

Statistical systems using classical amino acid propensities are generally 

designed around the propensity. For example, Chou and Fasman (1974) considered 

hydropathy as a key propensity. As a result, the Chou-Fasman algorithm combines

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

27

windows of measured hydropathy indices as a means to determine secondary 

structures. The combinational method is based on a hypothesis concerning the 

propensity’s interactions.

In contrast, probabilistic Bayesian networks (Delcher et al., 1993; Klinger & 

Brutlag, 1994; Koretke et al., 1996) first determined dependent sequence positions 

and then apply the observed occurrence rates of amino acids matching the combined 

pattern. In probabilistic models there is generally no correlation made between the 

observed occurrences and classical propensities.

3. Artificial intelligence models

Models using artificial intelligence (Al) generally focus on neural networks 

and extend the statistical approach. Rather than manually specifying the propensities 

or the combination method, perceptrons (or similar systems) are used to determine the 

important combination patterns and the optimal propensities. These systems are 

generally more accurate than statistical, homology, or motif models in predicting 

general protein structure, but they are frequently criticized for providing no insight 

into the prediction process. Neural network prediction systems are accurate black- 

boxes. This is in contrast with the statistical or homology approaches where the 

factors determining the prediction are readily identifiable.

4. Molecular dynamics simulators

Molecular dynamics (MD) simulators can be used to predict secondary and 

tertiary formations. Through MD modeling, the simulators can approximate the 

position of each atom in the protein. This process is slow and time-consuming; 

modeling a moderate protein with 200,000 atoms can take weeks or months of 

simulation time. Additionally, simulation factors may bias the result; simulated 

folding in a vacuum is faster than simulating an aqueous solution, but may not be as
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accurate. Other biases may stem from force fields (holding the aqueous solution in a 

bubble), torus mapping (an atom which moves too far “up” will appear at the 

“bottom” of the simulated environment), or cumulative floating point errors in the 

computations.

More often, MD simulators are used to test the stability of a theoretical protein 

configuration. Through the use of prediction techniques, an approximate initial 

configuration can be identified. The MD simulators are then used to model the 

predicted shape and determine whether it is stable or unstable.
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in . DATA COLLECTION

This chapter discusses the two common types of protein data sets used by 

prediction models. In addition, a novel approach is described that combines the two 

types of data sets for use with this research.

All proteins used by this research, and nearly all proteins studied by related 

prediction models, are publicly available from the Brookhaven Protein DataBank,

PDB (Abola et al., 1987). Protein entries in the PDB contain publication references, 

the primary sequence, secondary structure locations, and three-dimensional atomic 

coordinates for each (non-hydrogen) atom in the proteins. Some of the proteins in the 

PDB are theoretical or have been determined by simulations, although most have been 

identified by X-ray crystallography or nuclear magnetic resonance spectroscopy 

(NMR).

A. Data sets commonly incorporated by prior models

Historically, two types of data sets have been used in protein folding 

prediction models: homologous and nonhomologous protein data sets. A homologous 

protein data set is used when small changes in the primary sequence are desirable. 

Models which use homologous data, such as Chou-Fasman (1974) and Kyte-Doolittle 

(1982), measure the differences between similar proteins. It is hypothesized that the 

observed changes between similar proteins are due to the differences in the primary 

sequence. Thus, a nonhomologous data set would provide too many differences, 

leading to ambiguity in the measured results.

Mutagenesis can aid the homologous-based systems. For example, there are 

over 100 mutagenic variances to lysozyme (Matthews et al., 1973) available in the 

PDB. Using these proteins, accurate measures of hydrophobicity and specific amino 

acid interactions can be made and compared with the specific differences in the 

primary sequence.
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The alternate type of data set, containing nonhomologous proteins, is generally 

used by statistical and Al-based approaches. Homologous proteins, by definition, are 

more similar than different. When homologous proteins are used in a statistical 

model, the repetition of similar structure biases likelihoods. Neural network systems 

memorize the similar configurations and treat the differences as noise, rather than 

generalizing the data. Thus, homologous data sets are not very useful for these 

systems due to the large amount of repeated data. Nonhomologous protein data sets 

remove redundant sequences, effectively eliminating a source of bias.

The PDB contains far more homologous proteins than nonhomologous. While 

there is an ample supply of similar proteins for small measurements based on specific 

differences in the primary sequence, there are only about 250 nonhomologous 

proteins (Chothia, 1992) containing around 20,000 atoms available for systems which 

are biased by homology.6

B. Nonhomologous data set incorporating mutagenesis

While nonhomologous data sets are applicable to statistical and Al-based 

prediction systems, the small differences in homologous proteins are explicitly 

ignored. A novel approach for generating a larger data set suitable for statistical and 

neural network-based systems incorporates both nonhomologous proteins and 

nonhomologous regions of similar proteins.

Many of the previous approaches use homologous proteins (Chou & Fasman, 

1974; Kyte & Doolittle, 1982). While these proteins are somewhat different, they are 

in the same family. Unfortunately, related proteins generally have related structures 

and can bias a probabilistic data set. Other approaches use nonhomologous proteins 

(Qain & Sejnowski, 1988; Rost & Sander, 1993a) from the PDB (Abola et al., 1987)

6In October, 1992, the PDB contained 1007 protein structures. By January, 1998, it 
had grown to contain nearly 7000 protein structures. The data presented in this 
research only reflects the PDB from October, 1992 (see Appendix A).
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consisting of about 20,000 amino acids. In addition to nonhomologous proteins, we 

include nonhomologous segments from homologous proteins. For example, there are 

over 100 mutants of lysozyme (Matthews, 1973) in the PDB which differ only by a 

few amino acids. To avoid biasing the data set, only windows of seven amino acids 

containing a unique amino acid taken in the context of the primary sequence were 

included. Therefore, each sequence of seven amino acids in the collected data set is 

unique.

By incorporating unique amino acid contexts from homologous proteins, the 

data set size can be doubled without introducing additional bias.7 In addition, 

repeated primary sequences from small identical regions found in the 143 

nonhomologous proteins are removed. As the example in Table 2 illustrates, a data 

set containing nonhomologous proteins would only include 2CPP and 1L13. 1L18 

would be dropped from the data set due to homology with 1L13. By incorporating the 

unique context found in 1L18, the example data set size increases by more than 10%.

Table 2. Sample unique amino acid contexts over three proteins

PDB entry Residues 26-58

2CPP (Poulos et al., 1987) 

1L13 (Alber et al., 1987) 

1L18 (Alber et al., 1987)

SAGVOEAW AVLOESNVPDLVW TRCNGGHW IAT

T IG IG H L L T K S P S L N A A K S E L D K A IG R N C N G V

T IG IG H L L T K S P D L N A A K S E L D K A IG R N C N G V

7It is conceivable that hundreds of homologous proteins can differ by a single amino 
acid in a specific region. The repetition of the same context with a minor variance 
would bias statistical and neural network systems much the same way as entire 
homologous proteins would. Fortunately, the PDB currently contains no more than a 
few similar variants of the same region from homologous proteins.
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C. Data set implementation

The data set used in this research contains 483 proteins collected from the 

PDB. These account for nearly 100,000 amino acids, of which 40,363 amino acids 

are in unique contexts and 143 proteins are composed entirely of unique windows of 

seven amino acids. The proteins used in this research, and their unique context 

locations, are listed in Appendix A.

The data set has been divided into training and testing sets. The training set, 

used to compute the likelihoods for the system, contains 433 proteins, accounting for 

31,582 unique contexts. The testing set contains the remaining 50 proteins which are 

composed entirely of unique contexts and which are not included in the computation 

of the likelihoods. The distribution of amino acids in secondary structures within the 

data sets (both training and testing sets) is provided in Table 3.
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Table 3. Distribution o f  amino acids in data set

Percent occurrence Percent of total amino acids

helix sheet coil total data set nonhomologous data set

Ala (A) 48% 18% 34% 8.6% 8.7%

Arg (R) 44% 21% 34% 4.2% 3.2%

Asn (N) 30% 17% 53% 4.5% 4.5%

Asp (D) 35% 15% 51% 6.2% 5.6%

Cys (C) 28% 32% 41% 1.8% 1.5%

Gin (Q) 42% 24% 35% 3.6% 3.6%

Glu (E) 48% 16% 36% 5.9% 4.8%

Gly(G) 20% 21% 59% 8.3% 8.6%

His (H) 34% 22% 44% 2.1% 2.4%

De CD 37% 37% 27% 5.5% 4.5%

Leu (L) 46% 27% 27% 8.1% 8.3%

Lys (K) 41% 20% 39% 6.3% 6.7%

Met (M) 48% 26% 27% 2.0% 1.5%

Phe (F) 35% 31% 34% 3.9% 3.8%

Pro (P) 17% 15% 69% 4.3% 4.5%

Ser(S) 30% 21% 49% 6.3% 7.7%

Thr (T) 27% 30% 44% 5.6% 6.4%

Trp (W) 37% 29% 33% 1.5% 1.5%

Tyr(Y) 33% 30% 37% 3.6% 3.5%

Val (V) 31% 40% 29% 7.0% 7.4%

Unka 10% 10% 80% 5.2% 1.3%

Total 35% 25% 40% 100.0% 100.0%
a Unk accounts for unknown or uncommon residues in the data sets.
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IV. ACCURACY METRICS

In order to determine the effectiveness of the prediction process, a variety of 

accuracy metrics is employed. An overall correctness metric, Q„ is used to provide a 

general utility measurement. This metric provides no specifics about the prediction’s 

effectiveness, but rather summarizes the prediction performance. The Qpredict and 

Qohserv* metrics are useful for determining over- and under-predictions. A correlation 

coefficient, CcoeJi is used to determine the relationship of correct and incorrect 

predictions.

Predictions analyzed in this research determine the presence or absence of a 

secondary structure feature when provided with a portion of a primary sequence. A 

positive instance indicates that the feature is present; a negative instance indicates the 

absence of the feature. We define the terms correct positive (CP) and correct negative 

(CN) to indicate a correct prediction of the secondary structure when compared with 

the actual structures found in the PDB entry. Similarly, a false positive (FP) and false 

negative (FN) indicate incorrect predictions. A FP indicates an over-prediction; the 

feature is predicted to be present while it was observed to be absent. A FN indicates 

an under-prediction; the feature is predicted to be absent even though it was observed 

to be present. N  represents the total number of predictions.

A. Overall correctness: Qt

The overall correctness metric,

q  CP+CN _ CP+CN
1 CP+CN+FP+FN N  ’

compares the total number of correct predictions to the total number of predictions 

(AO- This simple metric provides only a general summary of the prediction; it cannot
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be used to determine weaknesses in the prediction process due to over- or under­

prediction of features.

The Q, metric is applicable only to single-structure prediction. Since related 

prediction models determine multiple secondary structures, no other prediction 

system uses this metric. We have duplicated the single neural network system of 

Qain and Sejnowski (1988) for use as a baseline for comparison purposes.

B. Combined correctness: Q3

Most prediction systems determine all secondary structures. The combined

metric,

(Qain & Sejnowski, 1988), similar to Qh provides a simple success rate for the 

combined helix (a), sheet (P), and coil (c) prediction. This metric is commonly used 

by prediction models to provide a general measurement of the prediction accuracy.

C. Over-prediction: Qpreiict

Qpredia compares the number of correctly predicted amino acids in a structure 

with the total number of predictions:

This frequently-used metric determines the amount of over-prediction. It is 

unaffected when the system under-predicts a structure, but is influenced by the 

number of false-positive predictions.

e 3= (9)
N

(10)
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D. Under-prediction: Qobserve

In contrast to Qpredic[, Qohsenc measures the amount of under-prediction by 

comparing the number of correctly predicted amino acids in a structure with the total 

number of amino acids observed in the structure:

O CPx!observe Q p + p t f '  (H)

A prediction system which fails to identify observed helices performs poorly with this 

metric. Like Qpredict, Qobserve is a commonly-used metric.

E. Correlation coefficient: Ccaef

More complex than Q„ the correlation coefficient (Matthews, 1975),

CPxCN -FPxFN
coef~ ■ : = = »  (12)

y/(CP +FP)(CP +FN)(CN+FP)(FP +FN)

compares the number of correct predictions with the number of false predictions. In 

general, C determines the relationship between the occurrence of correct predictions 

and the absence of incorrect predictions. A high correlation indicates few false 

predictions, while a low correlation shows a high degree of error from the prediction 

system.
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V. MODIFICATIONS TO THE NEURAL NETWORK SYSTEM

The basic neural network model for protein folding prediction is based on the 

NETtalk system (Sejnowski & Rosenberg, 1986). This system showed that a neural 

network system can identify high-level structure (pronunciation) from a low-level 

pattern (the alphabet). Current protein prediction models based on this system have 

included some modifications to the basic system, but divulge little of the information 

stored within the prediction system. Consequently, many aspects of the NETtalk 

system, including implicit assumptions, have not yet been challenged, and little has 

been done to analyze the information content of the neural network system.

In this chapter the basic NETtalk system is modified in order to optimize the 

system and determine the factors important to the network. We introduce the concept 

of a null amino acid to maintain a constant input norm for the perceptron. The 

information content, describing both information location and importance, is derived 

from the weight matrix analysis. Methods for analyzing the weight matrix include 

“poking holes” in the input window, denying inputs, and applying variable window 

sizes. Enhancements to the inputs are tested by associating amino acid properties 

with the input window. Multiple output systems, such as majority prediction systems, 

are discussed. The final section of this chapter summarizes the implicit assumptions 

and limitations of the NETtalk-based approach.

A. Null amino acid representation

The input size of the prediction system is generally consistent: a seven amino 

acid window maintains seven active system inputs. This consistent input size gives 

the system a constant norm over the input vector. But when the input window 

contains the protein terminals, the norm changes since fewer inputs (amino acids) are 

available for the window. The net result is that all amino acids are treated with equal 

input weights except the amino acids near the protein terminals. This change in input
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Table 4. Comparison o f null amino acid effectiveness

Q t Qpredict Qobserve Qur/

Tested on total proteins

with Nul 65.92% 60.44% 58.10% 0.350

without Nul 65.78% 58.05% 60.01% 0.339

Tested on terminals only

with Nul 73.35% 97.78% 62.92% 0.742

without Nul 72.33% 96.90% 64.62% 0.694

weight can effectively confuse a single perceptron.

We introduce the concept of a null amino acid (Nul) to maintain a consistent 

input window size. When no amino acid is available for a window position, Nul is 

used as a placeholder in the window position. The null amino acid plays a similar 

role to the “space” letter in the NETtalk system.

As illustrated in Table 4, the null amino acid has little effect on overall protein 

prediction, but significantly improves the terminal regions. This is because protein 

terminals, where Nul is used, account for about 12.5% of the entire data set. When 

tested strictly on the protein terminal regions, the prediction accuracy increases 

noticeably. Nul correlates with increases in Q„ Ccoef, and Qpredic„ while causing a 

minor drop in Qobserve- The loss of Qabserve accuracy appears to be due to a more 

conservative prediction from the system.

Unless noted otherwise, all neural network systems mentioned in the 

remainder of this chapter implement the null amino acid.

B. Weight matrix analysis

The weight matrix of the neural network stores the information learned by the 

system. Unfortunately, many input factors influence the weight matrix, including
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magnitude, quantity, and type. These factors are combined within the weight matrix, 

making analysis of the learned information difficult. As a means to identify 

distinctive elements and determine their significance within the weight matrix, 

specific influencing factors have been identified and withheld from the system. By 

isolating these factors, the effects on the network’s performance can be observed.

Two specific factors that affect the prediction system have been identified and 

examined. Using “windows with holes” suppresses a specific position of the input 

window. This allows the importance of a specific input position to be observed. 

Alternately, the use of asymmetrical windows identifies the influence of neighboring 

positions and the secondary structures which may be learned by the system.

We hypothesize that different positions within the sliding window have 

different degrees of importance. Under this hypothesis, it is conceivable that an 

amino acid at specific position in the sliding window has a stronger influence on 

structural determination than an amino acid at a different position, regardless of the 

amino acid types. This hypothesis is tested in two ways. First, the raw weight matrix 

of a trained neural network system is graphed, equating the weight magnitudes with 

the window positions. Second, each position within the window is suppressed and 

the resulting network accuracy is compared with the unsuppressed system. For testing 

these hypothesizes, a neural network with a 15 amino acid input window is trained on 

helix structures.

1. Weight matrix position analysis

Figure 11 shows average weight matrix values for each window position. The 

system was trained with the null amino acid and an input window of 15 amino acids. 

The system only predicts helices: each position is predicted as a helix or not-helix. 

Each line in the figure represents one amino acid, but the individual amino acids are 

not labeled. While the raw value of the weight matrix is unimportant (it can be scaled 

without affecting the system) the relative values indicate the degree of importance
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within the system. Window positions -2 through +4 appear to represent inputs that 

are considered important to the system. These inputs have large magnitudes and can 

be readily classified as helix-forming or helix-breaking positions. Specifically, 

positions -3 , -1 ,0 , +2, and +4 appear to be helix forming positions, while positions 

-2 , + 1, and +3 appear to be helix breaking position.

The window positions between -3  and +7 show strong similarities in weight 

magnitudes, regardless of the amino acid. In contrast, the positions between -7  and 

- 4  appear fairly randomized, possibly representing noise in the system.

When the importance of each position is placed around the helix wheel (Fig. 

12), it appears that the neural network system clusters helix forming and helix 

breaking window positions. This suggests that the system matches strong helix 

forming patterns (or weak helix breaking patterns) around the helix wheel with helix

0.4

0.3

0.2

0.1

3a
>K•n
T3S - 0.1

- 0.2

-0.3

-0.4

-0.5

- 0.6
2 3 4 5 7-3 2 1 6-7 -5 -4 -1 06

Weight Matrix Window Position

Fig. 11. A trained neural network weight matrix, ordered by window position. The 
system threshold is 0.04.
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Fig. 12. Clusters of helix forming and helix breaking positions around the helix 
wheel. Axeas indicate the number of amino acids with weights above the threshold, 
as determined by the neural network system. The helix wheel appears divided into 
four distinct regions: two helix forming regions and two helix breaking regions.

identification.

Additionally, Qain and Sejnowski (1988) showed that there is no perceptible 

difference in accuracy when the system is trained for 50 iterations or 10,000 iterations 

over the training set. Advanced learning techniques, such as simulated annealing, 

appear unsuccessful in further reducing the prediction error. One possible 

explanation could be the helix wheel positioning. When the weight positions are 

displayed along the helix wheel during training, the helix forming and breaking 

regions appear to rotate. Although the forming and breaking positions appear at right- 

angles along the wheel, there is a virtually-infinite number of “best” positions. Error 

metrics, such as the mean squared error, attempt to identify the best weight matrix for 

the lowest error. Unfortunately, the mean squared error of this system does not vary; 

an increase would suggest overtraining, when the system begins to memorize the 

training set, while a decrease would indicate a better weight matrix. The system 

appears best trained when the mean squared error stabilizes, in as few as 20 iterations
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through the training set.

2. Windows with holes

Training the system with suppressed inputs, or holes in the window, allows the 

effects of each window position to be identified. Figures 13-16 show the effects of 

suppressing up to three positions from the input of a 15 amino acid window.

Positions 0 through +4 closely correspond with the position’s importance as 

determined by the neural network weight matrix. These positions have the strongest 

detrimental affect when removed from the system. Although not obvious from the 

observed weight matrix, positions -1  and +5 have virtually no effect on the system’s 

performance.

The window positions between -7  and -3  show possible noise in the neural 

network system. Similarly, the network trained with holes shows an inconsistency 

over the same region: a two amino acid hole at positions -4  and -3  performs 

significantly worse than either a one or three amino acid hole in the same position. 

This inconsistency in performance probably denotes the presence of noise in the 

system. Absence of positions in same region also causes an increase in Qubserve, 

indicating fewer missed helices, and a decrease in QpretIict, indicating fewer correct 

predictions.
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Fig. 13. The effect of suppressed positions (holes) within the input window, 
measured with the metric Q,. Holes representing the suppression of one, two, and 
three amino acids are presented.
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Fig. 14. The effect of suppressed positions (holes) within the input window. The 
results are measured with the Ccoef metric. Holes representing the suppression of one, 
two, and three amino acids are presented.
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Fig. 15. The effect of suppressed positions (holes) within the input window as 
presented by the Qobserve metric. Holes representing the suppression of one, two, and 
three amino acids are presented.
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Fig. 16. The effect of suppressed positions (holes) within the input window, using the 
Qpredia metric. Holes representing the suppression of one, two, and three amino acids 
are presented.
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In contrast to window positions [-7, -3], positions [-2 , +7] appear to have a 

high level of information content, maximized at positions +1 and +2. This indicates 

that the predictions formed by the neural network system are strongly influenced by 

the amino acids on the C-terminal side of the input window.

3. Asymmetrical window methodology

We hypothesize that information concerning secondary structure location 

within the sliding window of amino acids is neither symmetrically distributed around 

the central prediction point nor minor in the amount of extraneous information.

Under this hypothesis, a symmetrical window around the predicted position is not 

necessarily optimal for the system. A non-optimal window may add a substantial 

amount of noise to the system, greatly effecting the prediction accuracy. In addition, 

we hypothesize that the basic single sliding window approach is incapable of learning 

sheet or coil secondary structures.

In the original NETtalk system (Sejnowski & Rosenberg, 1986), a 

symmetrical window of seven letters was used to learn the pronunciation of the 

central letter. The window size of seven was determined by simple means: through 

the trial o f various window sizes, seven letters performed the best. In both the Qain- 

Sejnowski (1988) and Holley-Karplus (1989) secondary structure prediction systems, 

a variety of window sizes, ranging from 3 to 21 amino acids, was tested. Each of 

these systems used a symmetrical window around the prediction point.

Neural networks can generally identify noise in the system by quickly 

discerning which inputs to the system are useful and which are not. When excessive 

noise is applied to the neural network, the ability to identify useful information 

becomes more difficult and the prediction accuracy may suffer. In prior NETtalk- 

based systems, it was assumed that either the information content within the window 

was symmetrically distributed around the predicted element, or the amount of 

extraneous information (noise) was minor. Thus, we hypothesize that the information
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content is neither symmetrically distributed nor minor in systems with large sliding 

windows.

NETtalk-based prediction systems are used for determining helix, sheet, and 

coil locations from a single window of the primary sequence. The prediction of each 

secondary structure is independent, so conflicting predictions are resolved by 

awarding the structure to the strongest prediction. If, for example, a particular 

window is predicted as 0.28 helix, 0.27 sheet, and 0.26 coil, then the prediction would 

be a helix due to the larger likelihood. We hypothesize that the simple neural network 

system cannot learn sheets or coils, but instead leams different ways to represent helix 

(or not-helix) structures.

To test these hypotheses, the window is divided into three distinct regions. 

Through the modification of these regions, each hypothesis can be tested.

The first window region, R„ represents the position being predicted. This 

region is one amino acid in length and located between the two other regions. The 

second region, RN, contains all positions that are on the N-terminal side of the 

predicted region. Similarly, the third region, Rc, contains all positions that are on the 

C-terminal side of the predicted region. The entire input window can be described as 

Rn+R,+Rc. A symmetrical window of seven amino acids would be represented as 

3+1+3, while an asymmetrical window of seven amino acids could be described as 

0+1+6, 1+1+5, 2+1+4, 4+1+2, 5+1+1, or 6+1+0.

The middle region, R„ is always represented as one amino acid in length. 

Conceptually, R, may be larger than a single amino acid, representing a larger 

predicted region. However, in implementation, a large R, is equivalent to a small R, 

with larger RN and Rc regions. For example, the asymmetrical window 2+3+4 is 

equivalent to 2+(l+ l+ l)+4, or simply 3+1+5. This holds true for all protein regions 

except at the protein’s terminals, where a structure can only be predicted when all of 

the large R, is contained within the protein. Systems that predict based on large Rl 

regions perform similarly to those with small R, and larger RN and Rc regions.
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4. Asymmetrical window analysis

The neural network system was trained on a variety of asymmetrical window 

sizes. All windows of RN+l+Rc from seven to 61 amino acids in length were tested. 

Through the training of the neural network system on a variety of asymmetrical 

window sizes, the information content per terminal was determined, including which 

structures were applicable to this implementation of the sliding window approach.

As illustrated in the helix prediction (Fig. 17), the effects of the RN and Rc 

regions are asymmetrical. A small Rc region has a strong detrimental influence on the 

entire helix prediction, while having a small RtJ region has a minimal effect on the 

system’s performance. This may indicate that factors which begin the helix are less 

important than factors which form the C-terminal.

NETtalk-based prediction systems are commonly used to predict sheets and 

coils, as well as helices. Figures 18A and 18B view the surface described in Figure 

17 along the window’s N- and C-terminals, RN and Rc, respectively, including 

accuracies for helix, sheet, and coil predictions. This allows for identification of the 

region’s influence on the prediction.
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Fig. 17. The effects of variable asymmetrical window sizes on the prediction 
accuracy of the sliding window neural network model. The Qt accuracy of the system 
shows the three-dimensional surface from variable window sizes on helix prediction.
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sizes on the prediction
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The neural network seems able to identify some factors involved in 

determining helix location. This is evident by the dramatic effect changing the 

window regions has on the helix prediction accuracy. A small Rc region significantly 

reduces the effectiveness of the helix prediction, suggesting a high degree of 

information content. The minimum effective Rc length is around 2 amino acids, or 

half a loop in a helix; the optimal Rc size is around 10 amino acids, or 3 helix loops. 

Although the Q, metric continues to increase over larger Rc sizes, the Qobsi;rve values 

drop due to the excessive noise introduced by a large window size.

Although the effect of a small R# region is not as dramatic as Rc, it seems 

optimal at two or three amino acids (one helix loop). An N-terminal longer than 

seven amino acids (2 helix loops) appears to introduce excessive noise into the 

system, reducing its performance.

By using an asymmetrical window of 2+1+10, the simple accuracy metric Q, 

maximizes at 67.9%, with a correlation coefficient, Ccaef, of 0.37.

For sheet prediction (Fig. 18A and B), the simple accuracy metric, Qn does 

not vary significantly for any size window. The Q, metric measures around 75% over 

all window sizes. Amino acids are involved in sheets 25% of the time. By predicting 

“not-sheet” most of the time, a constant accuracy of 75% can be achieved. Although 

the neural network is used to predict sheets, this prediction alone is incorrect nearly as 

often as it is correct. This lack of variation suggests the single sliding window neural 

network system is incapable of determining sheet locations. One possible explanation 

is that a sheet depends on bonds between two or more non-adjacent segments in the 

primary sequence. Since the single sliding window only views a fragment of the 

sheet, the network is unable to learn the entire structure. To determine a sheet’s 

location properly, multiple sliding windows would be required, increasing the 

system’s complexity exponentially.

In contrast, the variable window size does appear to contain information 

related to helix and coil prediction (Fig. 18A and B). In both predictions, the effects 

of variable window sizes seem closely related; both show maximum information
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stored within the same region lengths. This close relationship suggests an inability to 

learn coil location and a recognition of “not-helix” structures.

Based on the accuracy from variable window sizes, we can support our 

hypothesis: the information stored in the C-terminal side of the predicted window 

appears to have a larger importance in the prediction process than the amino acids 

along the N-terminal side. Furthermore, a single sliding window seems unable to 

predict sheets and coils; the NETtalk-based system appears only capable of 

determining helix locations. Consequently, the remainder of this research focuses 

strictly on helix determination.

C. Association with amino acid properties

The quality of input into the perceptron directly affects the system’s learning 

ability. If, for example, the input is cryptic, then the system must learn to decrypt the 

input before evaluating the data. In contrast, data that is too simplistic or 

uninformative may not provide enough information to the system. Although the 

sliding window encoding is not cryptic, it may be too simplistic by overlooking key 

elements that may enhance the prediction process. In particular, known amino acid 

attributes, such as hydrophobicity, may provide useful information that the system 

cannot otherwise readily identify.

Some prediction systems, such as Chou-Fasman (1974) and Fauchere-Pliska 

(1983), use observed data to generate structural predictions. It is conceivable that this 

information cannot be readily derived from the position sequence. We hypothesize 

that associating these attributes with the positional information can provide additional 

useful information for the neural network system. To test this hypothesis, the 

statistical data from Chou-Fasman and Fauchere-Pliska were combined with each 

amino acid’s occurrence within the sliding window. This effectively adds “attributes” 

to each position within the window. Additionally, each amino acid’s molecular 

weight was used as an attribute.
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To apply the amino acid attributes to the sliding window system, the input to 

the network was modified from an array of possible amino acids to the amino acid’s 

single value attribute. For a seven amino acid window, the NETtalk system normally 

received 154 inputs: 7 window positions x 22 amino acid types (20 common amino 

acids + Unk + Nul). When using amino acid attributes, the same seven amino acid 

window system would only have seven inputs, one for each attribute. The attribute 

values were combined with the sequence position, incorporating 161 total inputs to 

the system.

The results of applying amino acid attributes to the NETtalk-based sliding 

window system (Table 5) show a substantial change in the system’s performance. 

Without using the sequence position, both Chou-Fasman and Fauchere-Pliska predict 

more accurately than the position sequence input. This indicates that the attribute’s 

information is useful to the prediction system.

Combining the attributes with the position sequence dramatically improves the 

generated predictions. This indicates that the information learned from the attributes 

is sufficiently different from the information learned from the position sequence. In 

addition, the information is complementary, accounting for the increase in prediction 

accuracy when combined.

The content provided by the attributes appears to identify different aspects of 

the learned information. The prediction system using Fauchere-Pliska values, 

measuring hydropathy, does not dramatically increase the accuracy when combined 

with the sequence information. This seems to indicate that the information content of 

the two inputs is similar. In addition, the Qobserve metric decreases in the combined 

system, suggesting an increase in noise or contradictory information.

Combining the Chou-Fasman system with the sequence position appears to 

perform similarly to the Fauchere-Pliska system. This suggests that the information 

learned by the combination of Chou-Fasman and sequence system may be equivalent 

to the Fauchere-Pliska system.

In contrast to the Chou-Fasman and Fauchere-Pliska systems, the molecular
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Table 5. Effects o f associated amino acid attributes on helix prediction

Attribute Q , Qpredict Qobjene Qocf

Single input types

Sequence position only 66.50% 61.20% 57.84% 0.357

Chou-Fasman 68.97% 68.60% 54.67% 0.389

Fauchere-Pliska 64.73% 60.84% 66.77% 0.395

Molecular weight 60.49% 67.49% 33.81% 0.327

Combined input types

Sequence position + Chou-Fasman 69.57% 66.56% 52.46% 0.384

Sequence position + Fauchere-Pliska 69.50% 66.00% 54.56% 0.388

Sequence position + Molecular weight 73.50% 69.16% 60.38% 0.442

Sequence position + all 3 attributes 74.05% 72.50% 58.47% 0.460

weight attributes perform substantially better when combined with the sequence 

position information. This suggests that the size of the amino acid, while relevant to 

the position, correlates with important information that cannot be directly derived 

from the sequence position observations.

D. Implicit assumptions and limitations in the neural network system

The implementation of the NETtalk-based neural network system for protein 

structure identification includes numerous assumptions which are not optimal for the 

prediction system. These assumptions include secondary structure determination and 

information content location.

Additional limitations to the system include the data set composition and size 

of the network system.
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1. Secondary structure determination and information content location

As shown in this chapter by the use of asymmetrical window regions, a single 

sliding window system cannot accurately predict sheets or coils; only helix 

identification is directly applicable. In addition, the tertiary and quaternary 

interactions may represent an important factor in more accurate structural 

identification, accounting for the 25% - 30% error in Q, measurements.

Through the use of windows with holes, we have identified the regions of high 

information content with respects to the neural network system. Window positions 

+1 and +2 appear to have the strongest influence on the neural network prediction. 

Furthermore, training the neural network system with asymmetrical windows reveals 

a larger influence on the prediction from the C-terminal of the window, with little 

influence from the window’s N-terminal, with an optimal window range of [-2,10].

2. Hidden layered systems and data set size

As shown by Qain and Sejnowski (1988), the results of training a multi­

layered neural network system are not significantly different than those of a single 

network system. In addition, the multi-layered system appeared to memorize the 

training set. Training the multi-layered system with the larger data set described in 

Chapter HI yielded little improvement in prediction performance, although the 

training set was not memorized by the system as rapidly. From this, we conclude that 

there is probably not enough data in the training set to teach properly a hidden-layer 

system.
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VI. PROBABILISTIC ANALYSIS REGARDING HELIX

PROPENSITIES

In this chapter we define region-specific, position-dependent propensities 

which quantify the likelihood that a given amino acid and its neighboring positions 

form the N-terminus, middle, and C-terminus of a helix. These values are combined 

using a Bayesian probabilistic approach to identify potential helix regions, including 

terminals and middles. From these potential helix regions, the pattern matching 

system described in Chapter VH determines the areas likely to be helices. 

Additionally, this approach incorporates a step-wise prediction process, allowing 

identification of the factors which are most significant in predicting the helix.

A. Definitions

We hypothesize that the regions of a helix have different helical propensities. 

In this section we define the helical regions and the region-specific, position- 

dependent propensities used in this research.

1. Window o f amino acids

A window of neighboring amino acids is used to define the influence range of 

a given amino acid. The influence of an amino acid varies with location within the 

window and is assumed to be insignificant outside the window. An amino acid at 

position i in the known primary sequence has a window covering the neighboring 

amino acid range [i-kN, i+kc], where i-kN and i+kc are the window’s N-terminal and 

C-terminal, respectively. Under this definition, the window of amino acids does not 

necessarily need to be symmetrical: kN does not need to be the same as kc. An 

asymmetrical window allows the prediction process to emphasize the influence of a
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specific terminal.

2. Regions o f  a helix

We hypothesize that the helical propensity for forming the middle of the helix 

differs from the propensities for forming the terminals. Therefore, we classify helices 

into three distinct regions: N-terminals, C-terminals, and middles. N-terminals 

correspond to the amino acids that are at the start of helices. Similarly, C-terminals 

are amino acids that are at the end of helices, and middles are between the N- and 

C-terminals. These regions are used to define the predicted helical propensities, N, C, 

and M, which denote the presence of N-terminals, C-terminals, and middles, 

respectively. We allow each amino acid in a primary sequence to be described by all 

three regional propensity values.

3. Region-specific, position-dependent propensities

Instead of a single helical propensity, each amino acid has different 

likelihoods to form the N, C, and M  regions of a helix. In addition, the influence on 

neighboring positions varies with distance. Therefore, each amino acid, a , is assigned 

multiple propensities to reflect its influence in forming the different helix regions, 

re[N, M, C], at each position within the window, ie[-kN,+kc]. This propensity is 

represented as the conditional probability: P(r at 0 I a at i)- P(N at 0 I a at i) indicates 

the likelihood that window position 0 is a helix N-terminal when window position i is 

the amino acid a. Similarly, P(C at 0 I a at i) and P(M at 0 1 a at 0 indicate the 

propensities for helix C-terminal and middle regions.

For a window ranging over [-7, +7], each amino acid would have a total of 45 

propensities: 15 N-terminal, 15 C-terminal, and 15 middle propensities. For example, 

Proline (Table 6) has M  propensities that vary by more than 0.16 across a the window 

and are not linearly distributed; the strongest M  region propensities are far from
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Table 6. P(re[N,M,C] at 0 I Proline at i) over the window ie[-7,+7]“

Region,
r

Window position, i

-7 -6 -5 -4 -3 -2 -I 0 I 2 3 4 5 6 7

N 0.15 0.14 0.15 0.16 0.15 0.20 0.22 0.19 0.16 0.14 0.09 0.05 0.05 0.06 0.08

M 0.31 0.29 0.27 0.27 0.27 0.22 0.20 0.16 0.15 0.16 0.17 0.21 0.23 0.25 0.28

C 0.09 0.09 0.08 0.07 0.06 0.05 0.07 0.11 0.14 0.18 0.21 0.19 0.17 0.17 0.16

a The data presented in this table was observed from the training set, described in 
Chapter III.

position 0, indicating a preference to be found outside of the middle region. Proline’s 

N- and C-terminal propensities also vary dramatically across different window 

positions. Proline at window position 0 shows a strong preference towards preceding 

the helix N-terminal, rather than appearing after (comparing 0.22 at position - 1 with

0.05 at positions +4 and +5). Similarly, the data indicates a preference for appearing 

after the C-terminal. In general, each amino acid is assigned multiple propensity 

values, one for each region, at each window position.

B. Computing likelihoods

Ideally, we would like to quantify the helix-forming probability of position i in 

a protein given a window of the primary sequence: P(position i is re[N, M, C] 1 

primary sequence in window [i -k N, i+kc]). The notation P(A I B) is the probability of 

the event A  occurring given that the condition B is true. In general, we want to 

determine region-specific propensities from a given sequence in the window, vv =

<atw, % +l, ..., a0, ..., akC> where aj is the specific amino acid a at window position j,  

using the conditional probability: P(r I vv). Bayes’ theorem provides a means for 

deriving such posterior probability, P(rlvv), from the conditional probabilities, P(wlr), 

and the priors P(r) and P(vv):
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D, , . P(r)xP(wlr)
m w )  = p m  • <13>

The probabilities P(r) and P(w) are determined by observation of the training 

set. P(r) is the observed occurrence rate of the region r; P(vv) is the observed 

occurrence rate of the amino acid amino acid sequence, w. P(w) combines the 

occurrence likelihoods of each amino acid in the protein sequence:

P(w) = I I  P(a) = P(ak )xP(alĉ l)x...xP(alc). (14)
j  =kN S N c

P(aj) represents the observed occurrence rate of the amino acid, a, occurring in 

window position j . Although P(a;) may be similar to the occurrence rate of the amino 

acid, P(a) = P(a0) when a, aQ, and ay are the same type of amino acid (e.g., a, a0, and ay 

are all alanine), P(a0) is not necessarily the same as P(ay). When observing each 

amino acid’s occurrence in each window of the training set, it is possible for window 

position 0 to be on or near the protein’s terminus. No amino acid is available for the 

window position j  when protein position /+ / is located beyond the protein’s terminus. 

This unavailability at the protein’s terminus leads to a difference between P(ay) and 

P(a0) when both represent the same type of amino acid.

Determining the helical prediction directly from P(w I r) is impractical. For a 

small window containing 7 amino acids, this would require a minimum of 3x207 

conditional probabilities, one for each unique sequence of 7 amino acids in each 

region. To resolve this problem, the conditional independence assumption is 

employed. The conditional independence assumption states that two amino acids at 

different positions within the window, a0 and ak (k*0), are conditionally independent 

in a helix region, r, when P(a01 ak, r) = P(at I r), or equivalently, P(a0, ak I r) = P(a0 I 

r)xP(ak I r). The conditional independence assumption greatly reduces the conditional 

probabilities needed for a Bayesian inference; hence, it is used quite frequently in the
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application of Bayes’ theorem. Based on this assumption, the conditional probability 

P(w I r) in Equation 13 can be computed from the product of P(<z71 r). To see this, we 

first replace w with its definition:

P(wlr) = P(av flw ...,fl0,...,flJtelr). (15)

Based on the conditional independence assumption stated above, we have: 

P(vvlr) = P(a. lr)xP(a, lr)x...xP(<2nlr)x...xP(a. Ir)

-  II P (1<°
j - k t f

Because the prior probability, P(w), can be expressed as P(wlr)xP(r) + 

P(wHr)xP(-v), Equation 13 can be rewritten as:

P(ak Ir)xP(r)
P(Hw) = ---------------------- *------- £----------------------------; (17)

P(ak ,...,ak Ir)xP(r) + P(afc ,...,ak |-ir)xP(->r)
K i t  K r  K » t  K r

{P(a. ir)x...xP(a* lr)}xP(r)
P(rlw) = ------------------------------- £--------------- £------------------------------------- .(18)

{?(a. \r)x...xP(a, !r)}xP(r) + (P(a. l->r)x...xP(at l-«r)}xP(-.r) 1 J
Kff kC kN

The conditional probabilities are determined by observing the training set.

P(ay I r) refers to the occurrence of amino acid a at position j  when position 0 is region 

r. For example, P(Ala at + 2 1 AO determines the likelihood that window position +2 is 

Alanine whenever position 0 is a helical N-terminal. Similarly, P{a.j\ t )  refers to the 

likelihood that the region at position 0 is not r. The prior P(->r) is equivalent to 1- 

P(r).

For each position, i, in a protein in the training set, a window [i-fcN, i+fcc] is 

constructed. The likelihood that the amino acid at position je[i-kN, i+kc] within a
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window, with region r at position 0, are observed. These conditional probabilities are 

denoted: P(^ l N), P(ayl M), and P(ayl C). The prior probabilities for the three helix 

regions are P(iV), P(M), and P(C).

C. Testing the conditional independence assumption

For testing the validity of this assumption, we compare the computed product 

of individual conditional probabilities from the training set, P(a01 r)xP(ak I r), with the 

observed joint conditional probabilities, P ( ak I r). To remove homology, a0 is 

required to be in a unique primary sequence context.

The pair-wise population of amino acids, where window position 0 is in a 

unique context with a neighborhood range fce[-5, +5], yields a data population size of 

26,460 pairs of amino acids (this includes correlations with Unk, the unknown amino 

acid). These pairs include position 0 as an N-terminal, C-terminal, and middle of a 

helix, as well as not N-terminal, not C-terminal, and not-middle regions. The mean 

difference between the observed and computed pairwise conditional probabilities is

0.0000000071429 (7.1429xE‘9) with a standard deviation of 7.2896XE-1 (Fig. 19).

The coefficient of determination, r2, is 0.8232, showing a strong correlation between 

the product of two conditional probabilities and their joint conditional probabilities. 

This high degree of correlation allows us to confidently assume that these amino acids 

combine helical propensities conditionally independently.
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Fig. 19. Independence analysis comparing computed occurrence rate of amino acid 
pairs in helical regions with the observed frequency. The high degree of similarity 
between the observed and computed probabilities suggests that amino acid helical 
propensities combine independently.

Although most pairs of amino acids seem to be conditionally independent, it is 

possible for some outliers in the data to be conditionally dependent. Outliers within 

the independence assumption analysis were determined using a quotient,

IIP(an,a. I r at 0) -  P(an I r  at 0)xP(a. I r  at 0)11
Q = ------ — ------------------------------------------ ---------------; k*0. (19)

P<av ak I r  at 0) '

At a cutoff of Q =l, outliers account for less than 2% of the available data. 

Each of the outliers contained infrequent amino acid combinations, including Unk, 

Trp, Cys, His, and Phe. Extremely low joint conditional probabilities in the
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Threshold of Qs 0.20 
Threshold of Q=0.50 
Threshold of Q“1.00

 ♦
0.002 0.004 0.006 0.008 0.01

Observed Frequency
0.012 0.014 0.016 0.018

Fig. 20. The outliers from the independence analysis are due to infrequency between 
the computed pairs. The outliers do not support the hypothesis that amino acid helical 
propensities are a dependent interaction. The threshold values of 0.20,0.50, and 1.00 
represent 25%, 50%, and 90% of the data points.

denominator o f Equation 19 result in large variances o f the quotient (Fig. 20).

D. Analyzing probabilistic information regarding helix formation propensities

In this section we describe the probabilistic information collected in this study 

and its implications for a novel probabilistic representation of helix propensitiy. The 

insight gained from this study has an important impact on the design of our 

methodology for identifying helix patterns, discussed in Chapter VII. Graphs of the 

propensity measurements are available in Appendix B.

Using the collected frequency of occurrences, we analyzed four independent
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representations from each amino acid’s helical propensity: the peak, N-terminal 

preference and cycles, C-terminal preference and cycles, and the scaled range.

1. Peak definition

The peak, P(M at 0 I %), determines the basic likelihood of an amino acid, akl 

forming a helix. Since amino acids are assumed to combine independently, it is 

feasible for an amino acid to modify neighboring position helix likelihoods more than 

its own position. For example, Leu has a larger helical propensity at position +2 than 

at position 0. The highest (or lowest) helical propensity given the amino acid at 

position 0 determines the peak and shows the amount of skew in the amino acid’s 

area of influence. We hypothesize that the combination of these neighboring 

influences determines the helical propensity at a specific position within the primary 

sequence. Few amino acids are observed peaking at, or having symmetry around, 

position 0. For example, Ala and Pro are observed to have peaks at position +1 and 

Arg peaks around +3. The width and magnitude of the peak varies for each amino 

acid, showing an asymmetrical region of influence.

2. N-terminal preference and cycles

The peak is not capable of providing information about the terminals because 

the helix terminals may appear at any position within the window. Aligning all the 

helices by the N-terminals, P(ak IN  at 0), identifies cycles and N-terminal 

preferences. When viewed from the aligned N-terminals, many amino acids display 

clear N-terminal cycles which oscillate every 3.6 amino acid positions, strongly 

correlating with the helix wheel. In particular, it should be noted that many amino 

acids show a preference toward a particular side of the helix wheel, dependent upon 

the terminal. This seems to correspond with known ambipathic stability 

configurations (Kyte & Doolittle, 1982; Chakrabartty & Baldwin, 1995). Some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

66

amino acids only show cycles when seen from a specific terminal. For example, Ala 

does not show cycles when seen from the N-terminal, but displays strong helix 

propensity oscillations every 3.6 amino acids when viewed from the C-terminal.

3. C-terminal preference and cycles

Similar to the N-terminal preference and cycles, aligning all the helices by 

their C-terminals allows us to determine helical propensities for the C-terminal, as 

well as propensity cycles correlating with the helix wheel. The aliphatics, Val, Leu, 

and He, as well as Ala, Lys, and Trp show distinct cycles when viewed from the C- 

terminal.

4. Scaled range definition

To determine whether an amino acid has a general preference toward the 

beginning, middle, or end of the helix, we scaled each helix to a uniform length, 

providing a common range. The scaled helices range from 0% at the N-terminal to 

100% at the C-terminal. A larger range, .se[-10%, 110%], is used to determine 

propensities “outside” the helical structure. Because helices vary in length, a single 

amino acid in the helix usually accounts for more than 1% of the scaled helix. 

Determining in scaled helix I scaled helix) shows that each amino acid clearly 

contains a region of high propensity within the scaled helix. Unlike the peak, amino 

acids with similar physical properties seem to have similar range distributions. For 

example, the acids Asp and Glu both prefer the N-terminal, while the bases Lys and 

Arg show no strong N-terminal preference. Other amino acids, such as Pro and Gly, 

are seen as strong helix breakers, even though Pro is also observed as a strong helix 

starter.
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5. Relation to amino acid and protein structures

The region-specific, position-dependent probabilities are different and unique, 

without expressing contradictory information. By relating known high-level helical 

features with these probabilities, we can develop heuristics for determining likely 

helix locations. We illustrate the relationship between the probabilistic information 

and known structures by comparing the data with known amino acid classifications 

and helix structures, including helix dipoles and rotational location along the helix 

wheel.

a. Amino acid similarities and classical classifications

Classical amino acid classifications are based on the physical characteristics of 

the residues. Similarities between physical characteristics have guided methods for 

determining nonidentical homologous structures (Needleman & Wunsch, 1970; 

Dayhoff et al., 1983). Because the propensities were measured without references to 

the amino acid’s physical molecular conformation, correlating similar likelihoods to 

similar molecular structure provides a strong argument towards the acceptability of 

the data.

The classical classifications included hydrophobicity, charge, and structures. 

W e compared each of these classifications with the region-specific, 

position-dependent probabilities.

(1) Hydrophobicity

Most proteins studied exist in aqueous solution. The hydrophobic amino acids 

tend to move away from the ambient water molecules, while the hydrophilic amino 

acids are attracted to water. The hydrophobic amino acids include Ala, Met, Cys,

Phe, He, Leu, and Val; the hydrophilic amino acids include Pro, Tyr, His, Gin, Asn,
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Glu, Asp, Lys, Arg8.

The collected likelihoods show a strong similarity between amino acids with 

similar hydrophobicity values. Met and Cys both contain sulfur and both have a peak 

values near 0.04, around positions +1 and +2. They show sharp declines in value 

toward the C-terminus. Phe, He, Leu, and Val all appear to be strong helix formers 

and display strong N-terminal cycles. Ala also appears as a strong helix former but 

shows no N-terminal preference. Instead, Ala, with its single-carbon side chain, 

shows C-terminal cycles similar to Leu.

The hydrophilic amino acids can be further distinguished by other traits such 

as charge and aromatic structure.

(2) Charge

The charged amino acids contain charged side chains. These include the 

negatively charged Asp and Glu, and positively charged Lys, Arg, and His. Each of 

these residues shows skewed, dual peaks. The most extreme peak, Asp, appears to 

have a strong helix-forming peak between positions -9  and -5, and a helix-breaking 

peak at position -1 . The other charged residues show two peaks, but not as extreme 

as Asp.

In addition to skewed, dual peaks, the charged residues also demonstrate 

strong terminal preferences and cycles. The negatively-charged amino acids appear to 

be attracted toward the N-terminal of the helix and show strong N-terminal cycles. 

Similarly, the positively-charged residues are attracted to the negatively-charged helix 

C-terminus and show C-terminal cycles.

8Some amino acids are either hydrophilic or hydrophobic, depending on the scale used 
(Kyte & Doolittle, 1982; Engelman et al., 1986). For this reason, Trp, Thr, Gly, and 
Ser are considered ambiguous and are not included.
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(3) Structures: aromatic and aliphatic

The aromatic residues, Tyr, Trp, and Phe, contain carbon rings. Physically,

Tyr and Trp are very similar. In the collected likelihoods, they appear very similar; 

they are both weak helix formers with peaks skewed toward the C-terminus. Phe 

contains a double ring structure and appears to have almost no peak, no terminal 

preference, and is not a strong helix former or breaker.

The aliphatic residues, Val, Leu, and lie, contain a forked carbon structure. 

Each of these has strong helix-forming tendencies and displays strong N-terminal 

cycles.

b. Correlation with helix dipole

The helix dipole moment is a charged bias along the helix. Each of the 

computed probabilistic propensities indicates a terminal preference for the charged 

amino acids, supporting a dipole identification. The negatively-charged amino acids, 

Asp and Glu appear to prefer the helix N-terminus, which is positively charged. 

Similarly, the positively-charged amino acids, Lys, Arg, and to a lesser degree, His, 

indicate a preference toward the negatively-charged C-terminus.

c. Correlation with helix wheel

Strong correlations exist between the region-specific position-dependent 

propensities and the amino acid’s positioning along the helix wheel. As seen from the 

N-terminal conditional probabilities, He, Leu, Val, Glu, Asp, and Phe all demonstrate 

cyclical variations in positional propensity approximately every 3.6 amino acids from 

the terminal. Similarly, Leu, He, Phe, and Ala show cyclical variations when viewed 

from the C-terminal of the helix.

These cyclical variations appear to indicate three factors concerning helix
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structure stability. First, the existence of these cycles suggests that the amino acids 

are not evenly distributed around helices; some amino acids show a preference toward 

specific sides of the helix. This preference may assist in the development of 

ambipathic helices, increasing the helix’s stability as clusters of amino acids with 

similar hydrophobicity align along specific sides of the helix. The amino acids with 

strong cycles from both terminals (He, Leu, and Phe) may be used as indicators of 

helical stability. A single position may provide strong helix-forming tendencies from 

both terminals, neither terminal, or from only one terminal, leading to their respective 

strong, weak, or moderate formation stability.

Most cycles do not begin at the terminals, but generally start after the first 

helix loop (after 3.6 positions from the terminal). This suggests that the location of 

the cycle is related to factors which terminate a helix. These factors could include the 

type of terminal amino acid, the system energy, or tertiary interactions.

Finally, not all amino acids have cycles. A lack of cycles for an amino acid 

indicates no preference toward a specific side of the helix or the factors which 

terminate helices. Additionally, some amino acids do not demonstrate cycles from 

both terminals. Val and Glu do not have C-terminal cycles, but show strong N- 

terminal cycles. Ala shows only C-terminal cycles. These amino acids suggest that 

the factors causing the N- and C-terminals are distinguishable and independent.
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VII. HELIX PATTERN METHODOLOGY

The posterior probabilities computed by the Bayesian inference system 

describe the likelihood that a particular position in the primary sequence is involved 

in an N-terminal, C-terminal, or middle region of a helix. These raw prediction 

likelihoods are commonly thresholded into boolean structure states; a predicted 

position is either a helix or a not-helix. Simple boolean thresholding may introduce 

problems such as spurious errors in the prediction. To refine the raw likelihoods, 

heuristics based on known helix formation factors are employed. The simplest 

heuristic, confirmation, removes spurious helix predictions from the raw likelihoods. 

Filling heuristics allow for small gaps in the predicted helix regions, while removal 

heuristics are applied to spumous classifications. Trimming heuristics are used to 

prevent excessively long helices. For determining the final likelihood that the 

predicted region is a helix, a verification heuristic is applied.

A. Thresholded helix prediction definition

The raw likelihood values derived from the prediction systems represent a 

measurement of helix propensity. Although comparable with each other, these raw 

propensities are not necessarily defined on a linear scale. For example, a propensity 

of 0.28 may be very close to 0.27 and yet not near 0.29. In the case of the neural 

network system, a sigmoidal threshold may be used, causing an exponential 

difference between values. Determining the presence or absence of a helix may be 

difficult since the threshold may vary with each primary sequence window. As 

illustrated in Chapters V and VI, the presence of an amino acid in a particular position 

of the window may significantly affect the propensity of the position being predicted. 

This effect may also cause variations in the “correct” threshold for helix 

determination.

To simplify the prediction process, a fixed threshold is applied to all raw
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propensity values. This assumes that the amount of variation, if any, in the threshold 

due to amino acid positions is a minor factor and can be classified as noise in the 

prediction process. If the raw propensity value is larger than the threshold, the 

structure is considered present. Similarly, a raw value lower than the threshold 

indicates the absence of the structure.

Similar to the neural network system, the Bayesian inference model compares 

the system output with a threshold value when determining the predicted structure.

To simplify the Bayesian inference model, the comparison threshold is fixed to the 

prior value of the structure. For helix prediction, amino acids are expected to occur in 

helices 35% of the time.

Problems can arise from the usage of fixed threshold values. Because the 

predictions are determined independently, spurious errors may occur. These errors 

may indicate a single primary sequence position as being a helix or not-helix in sharp 

contrast to the adjacent positions. Additionally, a small set of amino acids, such as 

two adjacent Alanines or Prolines, may heavily bias a series of adjacent positions, 

causing a tapering of the raw propensity values. This tapering may force values to lie 

just above or below the threshold, skewing the final boolean prediction. Finally, 

because the propensities are determined independently, the final predicted helix 

region may be physically unstable.

B. Knowledge-based refinement schemes

The application of heuristics which compare adjacent prediction values helps 

resolve issues raised from using fixed threshold values. These heuristics assist in the 

identification of spurious values and identify possible regions of physical instability. 

Four heuristics are identified: filling, removal, confirmation, and verification.
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1. Filling heuristics

Helices are known to consist of multiple amino acids; a single amino acid 

cannot be a helix. Through the use of filling heuristics, spurious helix and not-helix 

predictions are removed. There are two separate filling heuristics: absolute-fill and 

scaled-fill. Combining and using these heuristics raises a number o f issues including 

order of precedence and likelihood of benefits for the heuristics.

a. Absolute-fill heuristic

The absolute-fill heuristic identifies regions of gaps between adjacent helix 

predictions. For the sequence of helix - not-helix - helix, H-H, the not-helix is 

considered spurious and changed to a helix (Table 7). This approach is defined as an 

absolute-fill, since the filling does not take the raw propensity values into account. If, 

for example, the not-helix has a propensity near zero, indicating a very strong not- 

helix, it is still transformed into a helix. This heuristic assumes that small gaps in the 

prediction are due strictly to spurious errors.

When viewing helices as a physical structure, it is very possible for a single 

amino acid within the structure to lower stabilization in the helix. This allows the 

inclusion of unmodified H-H  patterns in the observed helices. It is expected that the 

not-helix in this pattern has a propensity slightly below the cutoff threshold. This 

case is corrected by the absolute-fill heuristic. Other common helix formations, such 

as the helix-tum-helix, may contain a single amino acid with a very low propensity 

which breaks an otherwise long helix. In this case, the absolute-fill heuristic will 

incorrectly connect the two helices.
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b. Scaled-fill heuristic

Similar to the absolute-fill, the scaled-fill heuristic transforms spurious not- 

helix predictions into helix predictions. But unlike the absolute-fill, the scaled-fill 

utilizes the raw propensity values. Just as a single cutoff threshold is applied to 

identify helix positions, a lower “filling” threshold is used to resolve spurious not- 

helices. When the raw propensity value of a not-helix in a H-H  pattern is slightly 

below the cutoff threshold, the position is changed to a helix. But, if the raw not- 

helix value is far below the threshold then it is left unchanged. The filling threshold 

determines the definition of “slightly below” and “far below,” allowing H-H  patterns 

in the prediction and representing a less extreme alternative to the absolute-fill.

2. Removal heuristics

To resolve cases of spurious helix classification, -H-, a removal heuristic is 

applied (Table 7). All cases of spurious helix classifications are removed regardless 

of the propensity value since a helix must be longer than a single amino acid. 

Therefore, -N-, -M-, and -C- are removed since there cannot be a terminal or middle 

without a helix.

The filling and removal heuristics introduce two issues to the prediction 

system: heuristic effectiveness and heuristic ordering in ambiguous cases. These 

heuristics are expected to include at most no additional error in the prediction. 

Assuming a random prediction with helices occurring 35% of the time, -H- patterns 

will occur approximately 15% of the time, while the H-H  pattern occurs less than 8% 

of the time. Based on this, the removal heuristic is expected to be applied more often 

than the filling heuristics, removing single amino acid helices from the prediction and 

increasing the correctness of the random prediction. Since predictions are not 

considered random, it is expected that these heuristics will, at worst, introduce about 

the same number of incorrect and correct predictions.
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Table 7. High-level knowledge-based rule set

Heuristic Simple rule Transition rule

Riling heuristics3 H-H -  HHH 
N-N-NNN  
M-M -  MMM
c-c -  ccc

N -M  -  MMM, NM M  
M -C  -  M M C, M C C  
N -C  -  NHC, NCC, MMC

Removal heuristics j 
i 

! 
i

t 
t 

» 
t

t
i

i
i

Trimming heuristics NMN -  -MM 
C C C  -  c c -

a The filling heuristics represent absolute-fill rules. For the scaled-fill rules, each 
transformation is compared with the scaled-fill threshold.

Heuristic ordering must be considered to resolve ambiguous cases where the 

order of application can cause different prediction results. Since the removal 

heuristic, which reduces over-predictions, is expected to occur more often than the 

absolute- and scaled-fill heuristics, preference is given toward over-predictions.

When predicting helices, we assume that an over-prediction is better than an under­

prediction. To resolve ambiguous cases of H-H- and -H-H, the removal heuristics are 

applied after the filling heuristics.

3. Trimming heuristics

The helix structure is made stable by hydrogen bonding between the helix 

loops. Each helix loop contains 3.6 amino acids. The trimming heuristic uses this 

information to shorten extraneous helix terminals.

The Bayesian inference system determines the likelihood of helix terminals 

and middles. If a terminal is found to be longer than three or four amino acids, then 

the extra amino acids are considered excessive and removed from the prediction 

(Table 7). More than three or four amino acids in a predicted terminal are expected to
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be over-predictions. Since there are 3.6 amino acids per turn, there is no place for the 

excess amino acids to bond. For example, suppose the system predicts many N- 

terminals followed by the remainder of the helix. This would correlate to a large 

number of bonds from the N-terminal to a middle or C-terminal, which in reality 

either do not exist or are too far away to form stable bonds.

The trimming heuristic is similar to the Neap and Ccap hypothesis (Aurora et 

al., 1994), in which specific terminating sequences exist at the ends of helices. Only a 

small terminating sequence is necessary for stabilizing the helix; longer Neap or Ccap 

regions are extraneous and can be omitted.

4. Confirmation heuristic

The confirmation heuristic is used to validate helices using known structural 

information. Based on the likely N-terminals (N), C-terminals (C), and middles (M) 

determined by the Bayesian inference method, a helix region is expected to be ordered 

from the N-terminal to the C-terminal; N  regions before M  and C, and C preceded by 

N  and M. This is denoted by the regular expression: iV*M*C*, where the asterisk 

denotes “zero or more occurrences.”

Because an a-helix has 3.6 amino acids per turn, it is expected that the helix 

terminal is no shorter than two amino acids. Under this hypothesis, the predicted 

helix pattern must have at least two amino acids in the N-terminal and at least two 

amino acids in the C-terminal. In between the terminals, there can be any number of 

ATs, M’s, and C’s as long as they are found in order. The shortest possible helix 

pattern is expected to be NNCC, matching the smallest helices containing four amino 

acids, while the general helix pattern is NN(N*)(M')(C‘)CC. Predictions that do not 

match the general pattern are not considered helices. For example, it is possible for a 

helix region to be predicted which contains only middle elements and no terminals.

In this instance, it is hypothesized that the helix cannot form since it has no likely 

beginning or end. Similarly, a predicted helix region that is missing a single terminal
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or is out of order is also not considered a helix.

When used in conjunction with the trimming heuristic, the confirmation 

heuristic shortens the terminals of the helix region definition to NN(M*)CC.

5. Predicted helix verification heuristic

The confirmation heuristic assumes that a predicted region matching the helix 

pattern correctly defines a helix. Since the components of the helix are determined 

independently, it is plausible for a region to match the helix pattern without forming a 

stable helix. For example, it may be possible for a predicted helix to have strong 

terminals and middles, but have them incorrectly rotated with respect to each other, 

causing structural instability. For example, in ambipathic helices the division of 

hydrophobic and hydrophilic amino acids along the helix wheel provides stability. 

However, if there is a  rotation in the middle of the helix, it is plausible for the 

interactions between the misaligned ambipathic N-terminal and C-terminal to 

destablize the helix.

The prediction verification heuristic views the helix as a whole, determining 

the likelihood that the entire structure is a helix. Because helices vary in length, each 

helix is scaled to a uniform size, from 0% at the N-terminal to 100% at the C- 

terminal. Rather than viewing specific positions in the helix, percentages within the 

helices are used.

The occurrence rate of each amino acid at a specific percent within the scaled 

helices of the training set are used to compute the probability of the predicted scaled 

helix. The likelihood of each amino acid’s being at a specified percentage of the 

scaled helix is compared with a fixed threshold denoting the entire region’s helical 

propensity. A predicted helix region will have a scaled helix propensity above the 

verification threshold.
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C. Helix pattern methodology implications

Heuristics based on the helix pattern methodology are expected to improve the 

Bayesian regional classifications. The filling heuristics are expected to improve 

Qpredict by allowing for marginal region classifications. Alternatively, the removal, 

confirmation, and verification heuristics should improve Qobserve by removing regional 

classifications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

79

V m . IMPLEMENTATION OF BAYESIAN INFERENCE SYSTEM  

WITH KNOWLEDGE-BASED POSTPROCESSING

This chapter focuses on a specific implementation of the Bayesian inference 

system for helix prediction, discussed in Chapter VI, with the helix pattern heuristics 

described in Chapter VH. Specific choices for the system configuration are provided, 

and the effectiveness of the implemented prediction model is compared with other 

prediction systems. Although the novel systems in this chapter are meant more as a 

proof of concept than as a final prediction system, their performance and accuracy are 

comparable to other black-box prediction systems.

A. Regional probability computation

The Bayesian inference system is used to determine three helical regions 

which are expected to have different helical propensities. These regions, V, M, and C, 

are determined by the observed occurrence rates of the amino acids in specific 

window positions. Because region M  is expected by be fully contained in the helix, a 

symmetrical window of 5+1+5 amino acids is used. This assumes that the M-region 

amino acid is influenced by approximately 1.5 helix loops on each side. An amino 

acid is considered to be in the M-region only when the conditional probabilistic 

propensity is greater than the prior odds for being a helix:

M: P(/zefctlwindow[-5,+5]) > 0.35. (21)

As shown by the neural network system in Chapter V, a symmetrical window is not 

necessarily optimal. For terminal regions, it is hypothesized that one or two amino 

acids beyond the helix terminal strongly influence the terminal formation. For 

terminal prediction, this hypothesis is combined with the conjecture that an amino 

acid in a helix is influenced by 1.5 helix loops on each side. The N-terminal region,
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N, is predicted when the conditional probabilistic propensity of the asymmetrical 

window 1+1+5 is larger than 0.20. Similarly, the C-terminal region, C, uses an 

asymmetrical window of 5+1+1:

N: P(N-terminal\windo'w[-l,+5]) > 0.20, (22)

C: P(C-termma/lwindow[-5, + l]) > 0.20. (23)

B. Implementation of Bayesian inference system with heuristic refinement

The results of applying the knowledge-based postprocessing methods to the 

Bayesian inference system are shown in Table 8. The standard threshold system 

determines helix location from a single cutoff value. The single propensity value is 

the same as the middle region, M, in the 3-region threshold system and is used for all 

heuristics. When applying the confirmation heuristic, the 3-region threshold system is 

used with the predicted N, M, and C components.

1. Baseline: standard threshold

The baseline used for comparing heuristic effectiveness is a fixed-threshold 

conditional probabilistic system. This system is similar to other Bayesian approaches 

for helix prediction (Klinger & Brutlag, 1994; Goldstein et al., 1994) in which a 

single helix prediction, M, determines the helix location. Only the filling and 

verification heuristics are applicable since the trimming and confirmation heuristics 

require identification of terminal regions.

The standard threshold prediction system is 69.3% accurate ((2/) but 

frequently over-predicts helices, as illustrated by the low Qpredicl value and the 

separation of 15.8% between Qpredicl and Qobserve. A similar value in Qpredlct and Qobserve 

would reveal noise in the prediction rather than a lack of prediction from the system.
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Table 8. Effectiveness comparison o f  heuristics

Heuristic Q i Qpredict Qobserve Qobserve

Qpredict

C co c f

Single-region standard threshold 69.6% 60.3% 76.1% 15.8% 0.4499

with filling heuristics 69.6% 60.3% 76.5% 16.2% 0.4506

with verification heuristic 70.7% 62.0% 71.2% 9.2% 0.4389

with filling and verification heuristics 70.6% 61.8% 72.1% 10.3% 0.4397

3-Region threshold using 
confirmation heuristic

70.6% 63.4% 74.3% 10.9% 0.4393

with filling heuristics 70.4% 63.0% 75.2% 12.2% 0.4374

with trimming heuristics 71.5% 64.8% 73.9% 9.1% 0.4523

with verification heuristics 70.9% 63.7% 74.0% 10.3% 0.4416

with filling and trimming heuristics 71.4% 64.4% 74.8% 10.4% 0.4516

with filling, trimming, and 
verification heuristics

71.4% 64.5% 74.4% 9.9% 0.4517

The 15.8% difference shows a potential problem with the prediction system due to 

lack of prediction, and not random error from the prediction model.

2. Application o f the confirmation heuristic

When using a three region prediction system, the confirmation heuristic 

becomes applicable for determining helical regions. Application of the helical pattern 

NN(N*)(M*)(C“)CC increases the overall accuracy while the correlation coefficient 

decreases. This is due to the over-prediction and under-prediction ratios; while the 

number of over-predictions decreases, the number of under-predictions increases.

The difference between Qpredict and Qobscrve drops from 15.8% in the baseline to 10.9%, 

showing a smaller discrepancy between noise in the prediction and under-/over- 

predictions.
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3. Application o f  the filling heuristics

The scaled-fill and absolute-remove heuristics were applied to the single 

threshold model and the three-region confirmation heuristic system. The scaled-fill 

cutoff threshold was set to 95% of the original threshold. For example, the M  cutoff 

threshold of 0.35 used a scaled-fill threshold of 0.33, allowing values slightly below 

the absolute threshold to be filled in. Because the scaled-fill increases the number of 

helix predictions, it is expected to increase Qobserve by decreasing the number o f under- 

predictions. Similarly, the absolute-remove heuristic is expected to increase Qpredict by 

decreasing the number of over-predictions.

While the single threshold system only considered patterns of H-H  for the 

scaled-fill heuristic, the three-region model fills many different patterns. In the three- 

region model, spurious not-helix predictions may be transformed into any of the three 

prediction regions. For example, N-N  can become NNN  and M-M can become MMM. 

Mixed fill sequences, such as N-M, N-C, and M-C  are also considered. For the 

scaled-helix heuristic, a spurious not-helix with a terminal propensity of 0.20x95% 

determines a terminal region and a middle propensity larger than 0.35x95% 

determines a middle region.

By applying these predictions, there is a strong increase in the Qobsene. Each 

implementation of the fill heuristics increases the Qobserve value. This suggests that a 

large amount o f error in the prediction system is due to spurious not-helix predictions.

Unlike Qnbserve, Qpredict d°es not increase when the filling heuristic is applied, 

and in some cases it slightly decreases. The decrease appears to be due to over­

prediction caused by the scaled-fill heuristic. Because the amount of decrease is small 

(approximately 0.4% in most cases), it indicates that the amount of error removed by 

the removal heuristics is nearly equivalent to the error added by the scaled-fill 

heuristic.

Application of the filling heuristics appears to increase the amount of error 

due to non-prediction. The difference between Qabsene and Qpredict increases when the
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filling heuristic is applied. This suggests a reluctance in the system for predicting 

helices, although the helices it predicts have a high accuracy. Since the difference 

does not decrease, the amount of error in the system due to random noise appears to 

be reduced.

4. Application o f  the trimming heuristics

The trimming heuristic is only applicable to the three-region prediction system 

since it is used to reduce the size of the terminal regions. This heuristic is always 

used with the confirmation heuristic, reducing the helix pattern from 

NN(N*)(M’)(C')CC  to NN(M*)CC.

As hypothesized, the application of the trimming heuristic increases the Qpredicr 

metric by reducing the number of over-predictions. The Qpreilict metric increases by 

about 1.4% while the Qobsene metric decreases by about 0.4%, indicating that the 

amount of error introduced by the removal of real helix terminals is much less than 

the amount o f incorrect helix predictions that were removed. In all cases, the 

trimming heuristic appears to lessen the difference between Qobseni. and Qpredic[, 

indicating less error due to non-predictions than due to noise.

The correlation coefficient appears to increase due to the trimming heuristic, 

not the filling heuristic. This suggests that the baseline system generally misses 

helices by predicting incorrect terminal locations.

When the trimming heuristic is used in conjunction with the filling heuristic, 

all accuracy metrics increase. This suggests that the effects from the two heuristics 

are independent and mutually beneficial to the prediction model.

5. Application o f the helix verification heuristic

After the three-region prediction model’s confirmation heuristic determines a 

helix location, the helix verification heuristic is applied. This heuristic views the
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entire helix as a whole and determines the overall likelihood of formation.

In implementation, the helix verification heuristic appears to accept nearly all 

helices. This heuristic increases Qpredic[ and decreases Qobserve by approximately the 

same amount, suggesting that the amount of error due to over-prediction is the same 

as the amount of under-prediction.

The helix verification heuristic only removes valid predictions and cannot 

increase the number of helix predictions. Because this heuristic reduces the 

difference between Qobserve and Qpndict, we can conclude that it only adds more noise to 

the prediction system by removing valid predictions and is generally not beneficial.

C. Comparison with other prediction models

The results of the Bayesian inference model with three distinct regions and 

refinement heuristics has been compared with implementations of other prediction 

models. The published results from other prediction models use different data sets for 

determining accuracy. Also, few of the published works use all of the accuracy 

metrics. Thus, the accuracy of a particular method may vary due to the training set.

To set a baseline for the comparisons, Qain and Sejnowski’s single-layer 

neural network system (1988) has been implemented on the data sets described in 

Chapter III and used by the Bayesian inference systems. This reimplementation is 

referred to as Reference 1. Although only the correlation coefficient is available from 

the original publication, it appears to be the same as the correlation coefficient in 

Reference 1. Reference 2 denotes the implementation of a modified single neural 

network system using the null amino acid and an asymmetrical window of 2+1+10. 

Reference 3 is the modified neural network system which includes the amino acid 

attributes in the system input, described in Chapter V.

With the exception of the Bayesian inference systems, each of the prediction 

models was originally designed to determine the main secondary structure: helices, 

sheets, coils, and in some cases, turns. The results presented in Table 9 represent only
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Table 9. Comparison o f prediction models

Prediction Model Q i Qpredict Qobserve Ccoef

Statistical Models

Chou and Fasman (1974) - - - 0.25

Robson and Suzuki (1978) - - - 0.31

NETtalk-based Neural Network Systems

Reference I: Qain and Sejnowski 65.4% 58.1% 60.0% 0.34

Qain and Sejnowski, 1988 (1 net) - - - 0.35

Reference 2: Qain and Sejnowski +■ null amino acid 67.9% 62.1% 54.6% 0.37

Qain and Sejnowski, 1988 (2 nets) - - - 0.41

Holley and Karplus, 1989 63.2% 59% - 0.41

Reference 3: input includes attributes 74.1% 72.5% 58.5% 0.46

Bayesian Inference

Standard threshold 69.6% 60.3% 76.1% 0.45

3-regions + filling and trimming heuristics 71.4% 64.4% 74.8% 0.45

Hybrid Systems

GOR (Gamier et al., 1978) 68.4% - - 0.48

DSC (King & Sternberg, 1996) 70.1% - - 0.58

Jury (Rost & Sander, 1993b) - 72% 73% 0.60

the helix prediction components.

I. Comparison with statistical models

Although the Bayesian inference system and classical statistical models are 

both used in probabilistic information, the Bayesian inference systems clearly have a 

significantly higher correlation coefficient. An explanation for this large difference 

involves the way the priors are determined and combined. For the Chou-Fasman 

(1974) and Robson-Suzuki (1978) systems, a specific physical factor, such as
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hydrophobicity, was identified as being important. The probabilistic values strictly 

reflect the known physical factor. The combinational approach implements how these 

physical factors combine.

In contrast to the classical statistical models, the Bayesian inference system 

does not explicitly take physical attributes into account. Instead, this probabilistic 

system only uses the observed positions within known helices. The combinational 

method does not explicitly account for physical factors. It is assumed that any 

significant physical factors will affect the observed occurrences.

The performance gain by using the Bayesian inference system indicates that 

hydrophobicity, and other physical factors, are not necessarily the determining factors 

in helix identification.

2. Comparison with neural network models

The neural network systems of Qain and Sejnowski (1988) and Holley and 

Karplus (1989), as well as the Reference systems, perform better than the classical 

statistical approaches, but not as well as the Bayesian inference systems. Although 

the Holley-Karplus system does appear more accurate than the Reference systems, 

this may be due to their testing method. As mentioned by Rost et al. (1993), Holley 

and Karplus did not cross-validate the predictions; the same data set was used for 

training and testing.

Although the neural network and Bayesian systems only use positional 

information, their combination methods are very different. A single neural network 

system cannot learn a generalized Bayesian combination. Rather than learning 

P(helix I window of amino acids), the single neural network can only learn P(window 

of amino acids I helix). A neural network with a single hidden layer can learn a 

Bayesian combination, but as shown by Qain and Sejnowski, there is currently an 

inadequate amount of data available for training a complex system.

An additional benefit of the Bayesian inference system is the step-wise
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combinational approach. Neural network systems act as black-boxes, making it 

difficult to identify what factors directly affect the prediction. In the Bayesian 

inference system, each predicted position can be traced to the specific conditional 

probabilities and amino acids which became the determining factors.

3. Comparison with hybrid systems

The hybrid systems combine many independent approaches to form a single 

prediction. The assumption is that each system’s prediction is based on partially 

unique factors. By combining the prediction schemes, the hybrid system can benefit 

from the unique aspects of the individual components. Each of the hybrid systems 

performs substantially better than the Bayesian inference system. This is most likely 

due to the predictions generated. In the Bayesian inference systems, only helical 

positions are used. Thus, tertiary interactions, such as a sheet dominating a segment 

of the primary sequence, are explicitly ignored. In contrast, hybrid systems predict 

helices, sheets, and coils, allowing the system to determine the dominating factors. If 

the hybrid system can even marginally predict sheets or coils, then the helix 

prediction will significantly improve.
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EX. CONCLUSION AND FUTURE RESEARCH

The research presented in this dissertation focused on the application of 

computer science techniques in the field of theoretical biochemistry. This 

interdisciplinary study analyzed current black-box neural network systems and 

applied information from the analysis into a novel step-wise (white-box) prediction 

system. This system provided insight into the prediction process and performed 

comparably well with existing prediction models.

A. Conclusion on basic neural network with sliding window

This research focused on the analysis of the NETtalk-based neural network 

system. Special emphasis was placed on identifying the aspects of the prediction 

problem that the system could and could not learn. In this work we have 

hypothesized and supported the following:

1. A consistent input window norm enhances the predictions at the 

protein terminus. This was supported by the use of a null amino acid 

which represents “no amino acid available.” Through the use of the 

null amino acid, terminal predictions increased the correlation 

coefficient by 0.05.

2. The neural network system places more importance on specific 

positions in the sliding window. Through weight matric analysis, we 

have shown that the neural network clusters important window 

positions around the helix wheel; strong matches around the helix 

wheel appear to form helices.

3. When predicting the middle of the sliding window, the neural network 

does not necessarily place maximum importance on the center of the 

window. Training the system on “windows with holes” and observing 

the amount of loss in prediction accuracy, we have shown that more
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importance is placed on window position +2 than on position 0. 

Additionally, we have shown that some positions, such as the extreme 

N-terminus positions, actually add noise into the system and result in 

less accurate predictions.

4. The neural network system does not place equal emphasis on the sides 

of the sliding window; a symmetrical sliding window is not necessarily 

optimal. By training the neural network on various asymmetrical 

window sizes, we have determined that more emphasis should be 

placed on the C-terminus than on the N-terminus. The optimal 

window size appears to have a two amino acid long N-terminus and a 

C-terminus with ten amino acids: a window of 2+1+10.

5. The information learned by training on specific amino acids and their 

positions is different and independent of the information learned by 

associating known propensity measurements with the window 

positions. This was demonstrated by training the neural network 

system with Chou-Fasman (1974), Fauchere-Pliska (1983), and 

molecular weight propensities. By combining these propensities with 

the amino acid in each window position, the prediction accuracy 

significantly increased.

B. Significance of the research

The significance of this research impacts the fields of Computer Science and 

Theoretical Biochemistry. In the field of Computer Science, this research has 

identified approaches for extracting relevant information from a neural network 

system and relates this information with the problem domain. In addition, this 

research has developed a knowledge-based approach for refining Bayesian-based 

classifications.

The impact of this research in the field of Theoretical Biochemistry include
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region-specific, position-dependent helical propensities. These propensities are used 

in a novel two-stage, step-wise prediction system. This system provides insight into 

the helix folding process and performs comparably well with existing black-box 

prediction systems. The insight provided by this system includes helix overlapping 

and adjacency.

C. Insight into the Bayesian prediction system

The high accuracy and step-wise prediction process of the Bayesian inference 

system provides insight into the factors used to determine helix location. The most 

general hypothesis within this prediction system concerns helix structures. We 

hypothesize that each amino acid has different propensities towards the three regions 

in a helix. The data collected and the prediction system’s high degree of accuracy 

strongly support this hypothesis.

I. Helix overlapping and adjacency

Sample output of the prediction system (Table 10) illustrates helix overlapping 

and adjacency. For example, in 1AAT (Torchinsky et al., 1982) a helix is observed 

between residues 312-341. This helix contains a bend at residues 319 (D) and 320 

(N). The bend corresponds with the predicted adjacent helices, 311-319 and 320-342 

(Fig. 21), denoted by the starting N-terminal at residue 320. In addition, residues 320- 

342 appear to contain overlapping helices, where the start of one helix (330-334) is 

fully contained in the middle of another helix.
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M \ /
tf*6ER-34-l —

rA  GLN-312

Fig. 21. The protein 1AAT as displayed by Rasmol (Sayle, 1994). The helix along 
residues 312-341 is highlighted and the bend at residues 319 (Asp) and 320 (Asn) is 
labeled.
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Table 10. Example o f lielix prediction: 1AAT (Torchinsky et al. 1982)
0 AASIFAAVPR APPVAVFKLT ADFREDGDSR KVNLGVGAYR TDEGQPWVLP WRKVEQLIA GNGSLNHEYL PILGLPEFRA NASRIALGDD

P(N w) NN NN N NN NNNNN N N NNN -NN -NNN N NN NN
P(M w) MMMMMMM M MMM MMMMMMMMMM MMMMMMM M M MMMM MMMMMM
P(C w) cc CC CC C CCC CC C CCCCC C CCCCCCCC
Pred H HHHHH H HHHHHHHH HHHHHHHH HHHHHH HHHHHHHHHH
Real H Aaaaaa aaaa Aaaaaaaaa a Aaaaa aaaa

90 SPAIAQKRVG SVQGLGGTGA LRIGAEFLRR WYNGNNNTAT PVYVSSPTWE NHNSVFMDAG FKDIRTYRYW DAAKRGLDLQ GLLSDMEKAP
P(N w) NNN NN NNNN N NnN NN NNN N N NN NNNNNN
P(M w) MMMMMMMM MMMMMMMMMMM M MMMM MMMM MMMMM MMMMMMMMMMMMMMMMMMMM
P(C w) CCCC CC c CCC- C C CCCCCCC CCC CCCC
Pred H HHHHHHHHHH HHHHHHHH HHH HHH HHHHHHHHHH HHHHHHHHHH
Real H Aaaaaa Aaaa aaaaaaaaaa Aaaaaaaaa Aaa aaaaaaaa

180 EFSIFILHAC AHNPTGTDPT PDEWKQIAAV MKRRCLFPFF DSAYQGFASG NLEKDAWAVR YFVSEGFELF CAQSFSKNFG LYNERVGNLS
P(N w) N -- NNNNNNNNN NN NN NNNNNN NNNNN N N
P (M w) MMMMMMMMM MMMMMMMMMMMMM MMMMMMMMMM M MM MMMM MM Mm
P(C w) C CC C— CCC CCCCCCC C CC C C C CCC CC cc
Pred H HHHHHHHHHH H HHHHHHHHHH HHHHHHH HH HHHHHHHHHH H
Real H A aaaaaaaaaa aaaa Aaaaaaaaaa aaaa

270 WGKDEDNVQ RVLSQMEKIV RTTWSNPPSQ GARIVATTLT SPQLFAEWKD NVKTMADRVL LMRSELRSRL ESLGTPGTWN HITDQIGMFS
P(N w) NNNNN NNNN -NN -NNNN N N NNNNN NNNNNN N
P (M w) MMMMMMMMMMMMMM M MMMMMMMMMMMMMMMMM MMMMMMMMMMM M
P(C w) ccccccc C CCC C C CC CCCCCCCCCC CCC-
Pred H HHHHHHH HHHHHHHHHH H HHHHHHHHH HHHHHHHHHH HHHHHHHHHH HHH
Real H Aaaaa aaaaaaaaaa aaa Aaaaaaaaaa a Aaaaaaaa aaaaaaaaaa aaaaaaaaaa aa Aaaa

360 FTGLNPKQVE YMXKEKHIYL MASGRINMCG LTTKNLDYVA KSIHEAVTKI Q
P (N w) — NNN NNN NN NN NN
P (M w) MMM MMMMMMMMMMMMMMMM MMMMM MMMMMMMMMMM
P(C w) CCCCCCcC CCCC C C CCCCC C C C
Pred H HHHHH HHHHHHHHHH HHHHH HHHHHH HHHHHHHHHH H
Real H Aaaaa aaaaaa Aaaa aaaaaaaaaa a
a The primary sequence uses the common amino acid single letter name. “N” and “C” show N- and C-terminals identified by 
the cutoff values, P(A0 and P(C). Application of the filling heuristics are denoted by “n” and “c”. “M” marks the predicted 
middle regions. Hyphens shows predictions removed by the trimming heuristics. “A” and “a” locate the start and length of the 
observed a-helices.
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2. Step-wise approach issues

Through the use of a step-wise approach, the exact factors necessary for 

determining each prediction are available. This approach has the potential for 

allowing rapid identification of potentially stable and unstable helices in a protein, as 

well as identifying the predicted cause of the structural formation. A step-wise 

prediction approach appears essential for reverse-engineering proteins and 

determining the effects of mutagenesis.

D. Limitations of the Bayesian inference system and areas for future research

The Bayesian inference system makes a number of explicit and implicit 

assumptions concerning helix formation. This system assumes helix formation occurs 

independently with respect to other secondary structures. The high number of false- 

helices which coincide with other secondary structures suggests that this is a poor 

assumption. Although the actual amount of tertiary structure interaction is as yet 

unknown, it may be possibly for different secondary structures to dominate sections of 

the primary sequence. The high number of false-helices may also be due to other 

factors, such as an unidentified helix aspect. It is also plausible that the false-helices 

are actually correct for an initial minimum energy folding state, as suggested by 

Boczko and Brooks (1995).

The observed conditional probabilities correlate well with some known helical 

patterns, such as the helix wheel. Other attributes, including each amino acid’s dipole 

moment within a helix, may also correlate with the observed data. If there is a 

correlation, then these physical factors may also be addressed by additional heuristics.

Each amino acid is assigned a common window size. For example, when 

using a window of 2+1+5, all amino acids use windows of 2+1+5. It may be possible 

for some amino acids to be optimal with larger or smaller windows. As shown by 

P(Mk I w0) in Chapter VI, different amino acids have different widths of effect; some
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are narrow and some are very wide. By combining each amino acid with different 

window sizes, it may be possible to increase the prediction accuracy.

Along with using a common window size, the Bayesian inference system 

weighs all regions equally. This assumption could be too general; it may be possible 

for some regions to dominate others, such as N-terminals having more importance 

than C-terminals.

The thresholding of the raw conditional probabilities into boolean attributes 

may also limit the effectiveness of the prediction system. The use of a fuzzy logic 

system instead of or in conjunction with the boolean thresholding and Bayesian 

inference may assist in increasing the predictions accuracy while maintaining the step­

wise approach.

As shown in the neural network analysis, combining amino acid attributes 

with Bayesian inference system may improve the prediction. Additionally, hybrid 

prediction approaches, which combine multiple prediction systems, still out-performs 

the Bayesian inference system even though the Bayesian inference system appears to 

be more accurate than any single prediction method. Combining this system with a 

hybrid approach could dramatically increase the prediction’s accuracy, but would lose 

its step-wise insight.
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APPENDIX

A. Data sets

The data sets used in this research are from the Brookhaven Protein Databank 

(Abola et al., 1987) release number 62, October 1992. Although many proteins have 

been added, or in some cases refined, since 1992, no effort has been made to update 

this data set.9 Modifying the data sets to be current is not expected to have a 

significant impact on the findings of this research. In particular, in 1992 the Protein 

Databank (PDB) was expected to contain no more than 5% error in sequencing. Four 

years later, less than 5% of the existing proteins have been updated with corrections.

The entire data set contains 483 single-strand proteins containing nearly 

100,000 amino acids. Of these, 40,363 amino acids are in unique contexts and 143 

proteins are composed entirely of unique windows of seven amino acids. The testing 

set, shown in List 1, contains 50 completely unique proteins with respect to the entire 

data set.10 This set is only used during the testing phase.

The residue numbering throughout the PDB is not consistent; some proteins 

begin with residue ED “ 1” while others begin with residue ID -5, 15, or some other 

number. To simplify the data set, all protein residues have been renumbered to begin 

with ED “ 1.” This renumbering only affects the amino acid residue ED and not the 

sequencing or location of secondary structures.

Uniqueness was determined through the use of the GNU “diff” application for 

comparing two files (Free Software Foundation, 1993). GNU diff works in a similar 

fashion to the MAT and PAM protein alignment matrices (Needleman & Wunsch,

9In October, 1992 there were approximately 1000 proteins in the PDB. By January, 
1997 the number of proteins increased to nearly 7000.

10When two or more proteins are similar, one is considered to be “unique” while the 
others are considered homologous to the unique protein.
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1970; Dayhoff et al., 1983) except that two different amino acids are considered 

different; diff allows no partial relations based on similarity between codons.
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List 1. Proteins and unique context locations in testing set

PDB protein ID Number of residues Unique context residues
1ALI 13 1-13
2ETI 28 1-28
1GCN 29 1-29
2CBH 36 1-36
1ATF 37 1-37
2SH1 48 1-48
4TGF 50 1-50
9PTI 58 1-58
1HCC 59 1-59
IC5A 66 1-66
1UTG 70 1-70
1UBQ 76 1-76
3FLX 79 1-79
2FXB 81 1-81
IMLI 96 1-96
LAPS 98 1-98

3WRP 101 1-101
4RNT 104 1-104
1ACX 107 1-107
5CPV 109 1-109
3C2C 112 1-112
2RHE 114 1-114
2MHR 118 1-118
1ALC 122 1-122
1PHY 126 1-126
8LYZ 129 1-129
4FXN 138 1-138
5MBA 147 1-147
2LH7 153 1-153
3DFR 162 1-162
5P21 166 1-166
1RBP 175 1-175
8DFR 186 1-186
2ACT 218 1-218
3DPA 218 1-218
3PGM 230 1-230
1TON 231 1-231
2PNP 289 1-289
4CCP 293 1-293
9ABP 305 1-305
6CPA 307 1-307
7TLN 316 1-316
5PEP 327 1-327
IALD 363 1-363
6XIA 387 1-387
2PHH 391 1-391
3AAT 405 1-405
9ICD 414 1-414
6CTS 433 1-433
4GRI 461 1-461
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The training set contains 433 proteins. Some of training proteins have no unique 

windows of amino acids, and other proteins have spurious unique contexts. The 

unique context locations, shown in List 2, represent the residues which, at position 0 

of a 7+1+7 window, compose a unique context.
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List 2. Proteins and unique contexts used in the training set

PDB protein ID Number of residues Unique context locations
1XY2 8 1-8
1ZNF 26 1-26
3CTI 29 1-29
1CBH 36
1PPT 36 1-36
1BDS 43
2BDS 43 1-43
1ATX 46 1-46
1CRN 46 1-46
ISH1 48
2HIR 49
4HIR 49
5HIR 49 47-49
6HIR 49 1-49
6RXN 53 1-53
1ROP 56 1-56

20  VO 56 1-56
1BUS 57
2BUS 57 1-57
6PTI 57 57
4PTI 58 1-7, 16-17, 25-28, 36,45
5PTI 58
7PTI 58 30,51
8PTI 58 35
1DTX 59 1-59
1PI2 61 1-61

1NXB 62 1-62
3EBX 62
5EBX 62 1-7,23-26, 41-42, 50-55
1R69 63 1-63
1SN3 65 1-65
2CI2 65 1-65

2CRO 65 1-40,48-65
1GF2 67 1-67
1CTF 68 1-68
1GF1 70 1-13, 26-45, 55-70
1PGX 70 1-70
1CTX 71 1-71
IHOE 74 11, 19-26,40,51-66
2ATT 74
3AJT 74
4ATT 74 1-74
3ICB 75 1-75
1FLX 79
351C 82
451C 82 1-82
1CC5 83 1-83
imp 85 1-85
3B5C 86 1-86
1LRP 89 1-89
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List 2. Continued
PDB protein ID Number of residues Unique context locations

3FXC 98 1-98
1PCY 99 10-16, 25, 33-36,46-47, 57-63, 85-87
2PCY 99
3HVP 99 14, 25, 37-41,63-67, 94-99
3PCY 99
3PHV 99 1-99
4PCY 99
5PCY 99
6PCY 99 1-7, 17-30, 45-99
7PCY too 1-100
1CYC 103 1, 12-17, 61-62, 70-75, 87-89, 103
IRNT 104
2RNT 104
3RNT 104 12, 39,55-62, 85-92, 100-104
5CYT L04 1-104
1RMS 105 1-68, 78-84, 97-105
1FKF 107 1-107

IOMD 107 1-107
1YCC 107 101-107
2CDV 107 1-107
2SSI 107 1-107

2YCC 107 1-29, 37-44,57-73, 85-107
1SRX 108 1-108
1CDP 109
I PAL 109
2PAL 109
3 PAL 109
4CPV 109 8, 26, 35-40,52, 60,79, 91-99, 109
4PAL 109 1-29, 37-41,49-50,58-60, 72-109
1CCR 112 1-21,30-78, 90-112
2C2C 112
1HRB 113 1-96, 104-113
1APK 118 1-26,34-53,62-118
1CY3 118 1-118
1BPK 119 1-119
1PAZ 120 9-20,29-37,45-46,54-55, 68, 78, 86-107, 120
2APK 122 1-122
3BP2 122 1,70-73, 84
1BP2 123 62-66
2BP2 123 1-3,59-61
2PAZ 123 1-123
4BP2 123 1-20,40-72, 80-87, 119-123
1P2P 124 58, 67-72, 85
1RSM 124
3FGF 124 1-124
3RN3 124 41,61-64, 76-78,88-92, 111-124
4P2P 124 1-124
5RSA 124
6RSA 124
7RSA 124 1-124
2FGF 127 1-12.20.41-60. 68. 104-109. 126-127
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List 2. Continued
PDB protein ED Number of residues Unique context locations

2CHY 128 1-128
1LYZ 129

2LYM 129
2LYZ 129
2LZ2 129 1-3, 15,41,73,98-101, 121

3LYM 129 1-4,16,24, 79-84, 108, 119
3LYZ 129
4LYM 129 36, 88,97-101, 109-129
4LYZ 129
5LYZ 129
6LYZ 129
1LHM 130 77,95
ILZ1 130 86-92

2LHM 130
3LEIM 130 1-107, 117-130
1IFB 131

2BPK 131 1-131
2BFB 131 1-131
1SNC 135 135
1ECA 136
1ECD 136
1ECN 136
I ECO 136 1-136
1SNM 136 1-6,23-37,48,62, 71, 92, 115, 129-136
3FXN 138
1LE4 139 139
2SNS 141 1-141
3CLN 143 1, 143
1LE2 144 136
1LPE 144 1-144
1HBG 147
1MBA 147
2HBG 147 1-147
3MBA 147
4MB A 147
8I1B 147 1-147

2CLN 148 1-148
4CLN 148 26-28, 37-39, 54-64, 99-101, 127-148
2LHB 149 1-149
31BI 149 149
1I1B 151 1,47-50, 106, 140

1RNH 151 1-151
21BI 151 69
4IBI 151 1-6, 19,31-46
4I1B 151 19,31-46,64, 83, 113-123, 134-151
5I1B 151 1-39,49,62,71-75, 87, 104-114, 127-151
1LH1 153
1LH2 153
1LH3 153
1LH4 153
1LH5 153
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L ist 2. Continued
PDB protein ID Number of residues Unique context locations

1LH6 153
ILH7 153
1MBC 153
IMBD 153
1MBI 153
IMBN 153
1MBO 153
1MBS 153 1-28,45-66,74, 118-132, 140, 151-153
2I1B 153 1-2,16,30,39, 54, 63, 74, 86,99-106, 126-138, 152-153
2LH1 153
2LH2 153
2LH3 153
2LH4 153
2LH5 153
2LH6 153
2MB 5 153 95, 124,149-153
4MBN 153
5MBN 153 1-153
1MBW 154 I, 123
5DFR 159
6DFR 159 16-59
7DFR 159 1-159
4TNC 160 1-2, 12,27,37-38,64, 97, 113-114, 140, 149-160
5TNC 161 1-37,47-161
1L36 162
1L55 162 92
1L57 162
1L59 162
1L6L 162 38
IL62 • 162
1L63 162
1L64 162 39-48
1L65 162 47
1L66 162 43
1L67 162 46
1L68 162 44
1L69 162
1L70 162
1L71 162 127-130
1L72 162 127
IL73 162 126-131
1L74 162 127
1L75 162 126-132
1L76 162 34,54,72, 162

4LZM ' 162
5LZM 162
6LZM 162
7LZM 162
1L01 164 155
1L02 164 157
1L03 164 157
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List 2. Continued.
PDB protein ED Number of residues Unique context locations

1L04 164
1L05 164 157
1L06 164 157
1L07 164 157
1L08 164 157
1L09 164 157
1L10 164 157
1L11 164 157
1L12 164 157
1L13 164 157
1L14 164 157
1L15 164 157
IL16 164 156
1L17 164 1-3
1 LI 8 164 1-3
1L19 164 38
1L20 164 144
1L2I 164 55
1L22 164
1L23 164 77
1L24 164 82
1L25 164 86
1L26 164 86
1L27 164 86
1L28 164 86
1L29 164 86
1L30 164 86
1L31 164 86
1L32 164 86
1L33 164
1L34 164 96
1L35 164 9, 164
1L37 164
1L38 164
1L39 164
1L40 164
1L41 164 83, 112
1L42 164
1L43 164 16
1L44 164
1L45 164
1L46 164
IL47 164 154
1L48 164
1L49 164
1L50 164
1L51 164 98, 149
1L52 164 152
1L53 164 149
IL54 164
1L56 164 60
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List 2. Continued
PDB protein ID Number of residues Unique context locations

1L58 164 143
1L60 164
1LYD 164 1-164
2LZM 164
3LZM 164
2APD 169 1-169
4Q21 169 15,26,37,58-75, 84, 104-117, 126, 140-151, 165-169
1TTE 170 1-170
1Q21 171
2Q2I 171 12, 170-171
1CD4 173 1-25,33-34,47,58-64,72, 112, 120-121, 132-136, 147-155, 

163-173
2FCR 173 1-173
1GCR 174 1-174
2CD4 177 1-177 .
1FHA 180 1-156, 166-180
2STV 184 1-184
1PPD 212 43,57,67, 108-117, 128, 138, 169, 206-212
9PAP 212 1-212
1CLA 214
2CLA 214 155, 194
3CLA 214 65, 155
4CLA 214 1-214
IBRD 219 1-56,68-120, 130-185, 194-219
1SGC 227
2SGA 227 1-227
1TGN 229
2TGD 229
1EST 230
1NTP 230 33, 80, 100
1SGT 230 1-175, 183-195,207-230
ITGB 230
1TGC 230
1TGT 230
1TLD 230
1TPO 230
1TPP 230
2PTN 230
2TGA 230
2TGT 230
2TRM 230 8-11, 34,47,56-115, 130-168, 187-189, 202-209, 221-230
3EST 230
3PTB 230
3PTN 230 1-5, 28-40,48-52,66-76, 88-92, 121-125, 141-146, 158-168, 

182-200,211-216
4PTP 230 1-230
6EST 230 101-156
8EST 230 1-230
2CNA 237 11,23,39-47,67,81-89, 103-107, 116, 131, 144-150, 179- 

190,200
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List 2. Continued
PDB protein ID Number of residues Unique context locations

3CNA 237 1-237
1CHG 245 12-15, 231-234
2CHA 245 10-11,28,39-41,49-69,92, 101-110, 133, 141, 149-155, 

163-166, 185-209,218-231
2GCH 245 101-176
3GCH 245
4GCH 245
5GCH 245
6GCH 245
7GCH 245 1-192,200-245
12CA 256
1C A3 256
1HCA 256
IHEB 256 194
1HED 256 194
2CAB 256 1-99, 107-187, 196-256
4CA2 256 101-156
5CA2 256 101, 158-196
6CA2 256 101-156
7CA2 256 101-156
8CA2 256 101-156
9CA2 256 1-256
1CA2 257
1HEA 257 195
IHEC 257 195
2CA2 257
3CA2 257 1
3BLM 260 1-260
3TMS 264 1-27, 37-174, 185-264
1S02 275 19,27,56-61,88-89,98-99, 158-159, 178-180, 197-201, 

239,251
ISBC 275 1-59, 74-79, 88-89,97-118, 129-172, 183-185, 194-217, 241- 

259, 271-275
1SBT 275 11-13,26-33, 63, 89-95, 132, 146-147, 175-177, 205-222, 

238, 253, 269-275
2SBT 275 1-275
2PRK 279 1-279
1PYP 281 1-281
1CCP 293 151-193
1RHD 293 1-293
2CCP 293 234
2CYP 293 52, 151, 190-193
3CCP 293 50, 190-193
1FNR 296
2FNR 296 1-296
1APB 305
1BAP 305
1CPB 305 1-82, 90-263,271-305
3GBP 305 1-15. 23-305
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List 2. Continued
PDB protein ID Number of residues Unique context locations

6ABP 305
7ABP 305
8ABP 305 101,247-253
1ABP 306 108-206
5CPA 307 37-39,47-48, 72, 89-93,102-109, 190,262
2GBP 309 1-3, 14, 26-44,58-61,70-71, 86,95,104-116, 127-143, 152, 

163-184, 201-211, 225-238,250-257, 274, 283-309
3TLN 316
4TLN 316
4TMS 316 1-316
5TLN 316
1LDB 317 198, 212-217
2LDB 317 1-83,93-122, 132-317
2TS1 319
3TS1 319 1-319
3PFK 320
4PFK 320 1-320
1LLC 322 1-129, 140-154, 162-180, 188-322
I CMS 323 1-3, 39-71, 87-89, 99-102, 125-129, 161, 173-175, 200, 221- 

225, 238-245, 253-255, 271-275,286-305
3APP 323 1-69,78-118, 128-323
2APR 325 1-33,41-325
3PEP 326 1-6,41,52, 163, 172-174, 199-204,255,275-289, 298,325- 

326
4PEP 326 1-24, 37,51-78, 97-98, 118-132, 149, 168, 176-195, 209- 

214, 229,240-253, 263,274-278,307-318
3CMS 327 101,241-252
4CMS 327 1-82,91-148, 156-289, 298-299,309-312, 320-327
1LDM 329 I, 130-136, 184-192,224, 237-247,262-264, 274,283,294- 

298
4APE 329 1-329
6LDH 330
8LDH 330 1-330
2LDX 331 1-29,40-157, 173-248,256-331
3LDH 332 1-9, 22-48, 56-57, 68-71, 83, 98-110, 133-155, 163-166, 181- 

266,295-301,311
2LIV 344 1-344
2LBP 346 1, 15-31,42-48,65, 76-77, 98-123, 135, 144, 157-165, 184- 

186,203-216, 229-231,239-319, 330-346
3BCL 356 1-356
IGOX 360 1-188,200-360
1PSG 371 1-49,60-91,101-114, 153-159, 169-179, 187-188, 199-206, 

246-247,268, 281, 289-293, 315-320,342-361,369-371
1MLE 372 1-19, 29-372
5ADH 374 9-10, 32-39, 88, 135, 159,226-228,354
7ADH 374 1-45,54-78,86-105, 113, 129-138, 148-168, 185-200,212- 

249. 259-269. 282-293. 304. 312-330.339-354. 365-374
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List 2. Continued
PDB protein ID Number of residues Unique context locations

8ADH 374 1-374
3XIA 377 I, 14-17,31-45,54-88, 101-105, 120-185, 195-238.246-250, 

277-295, 307, 323-331, 339-377
2XIS 386
3XIS 386 8-19, 30-33,43-52, 61-67,79-88, 105-106, 126-141, 149, 

173-178, 186-225,234-246,261-262,274-286
LXIS 387
4XIS 387 9-20, 31-34,44-53, 62-68, 80-89, 106-107, 127-142, 150, 

174-179, 187-226, 235-247,262-263,275-294, 320-322, 

330-351, 360-370, 382-387
1PHH 394 101-394
2CPP 405
3CPP 405
4CPP 405
5CPP 405
6CPP 405
7CPP 405
8CPP 405 1-405
1AAT 411 1-411
3ICD 414
4ICD 414 101-329
5ICD 414
6ICD 414 101-314
7ICD 414
8ICD 414 101-314
3PGK 416 1-416
1CSC 433
2CSC 433
3CSC 433
4CSC 433
5CTS 433
3ENL 436
4ENL 436
5ENL 436
6ENL 436
7ENL 436 1-436
ICTS 437 32-33,41,69,77-85, 104-105, 163-175, 196, 283-300
2CTS 437 9-12, 30-33,41, 69, 77-85,104-105, 163-175, 196, 283-300, 

343, 366-368,432-437
1TPT 440 1-440
3GRS 461
2TAA 478 1-478
7CAT 498 1-498
1COX 502 1-502
1ACB 531 1-531
5ACN 754
6ACN 754 1-754
1GPB 823 101-723
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List 2. Continued
PDB protein ED Number of residues Unique context locations

6GPB 828 101-828
2GPB 831 101-731
8GPB 832 1-832
3GPB 833
4GPB 833
5GPB 833 101-833
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B. Conditional probabilistic propensities

The following graphs show the helical propensities for each amino acid in 

each of the helix regions. The regions used are: helix (M), N-terminal (N), C- 

terminal (C), and scaled helix (S). The propensities for each of the twenty amino 

acids are presented. For readability, the amino acids have been clustered into 

subgraphs based on similar propensity characteristics: hydrophobics (He, Leu, Phe, 

Val), charged (Asp, Glu, Lys, Arg), polar (Cys, Gin, Trp, Tyr, and Asn, His, Ser, Thr), 

and “others” (Ala, Met, Gly, Pro).

Each figure presents the likelihood of a region given a specific window 

position, fce[-15,+15]. The four conditional probabilities are: P(M at 0 I w j, 1 N  

at 0), P(vvfc I C at 0), and P(vvT I scaled helix range i,e[-10%, +100%]).
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1. P(M  at 0 I wk)
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2. P(wk \ N  at 0)
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3. P(wk I C at 0)
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4. P(ws I scaled helix range se[-10%, +100%])
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